摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

androsta-3,5-diene-7,17,19-trione | 157022-91-8

中文名称
——
中文别名
——
英文名称
androsta-3,5-diene-7,17,19-trione
英文别名
(8R,9S,10S,13S,14S)-13-methyl-7,17-dioxo-2,8,9,11,12,14,15,16-octahydro-1H-cyclopenta[a]phenanthrene-10-carbaldehyde
androsta-3,5-diene-7,17,19-trione化学式
CAS
157022-91-8
化学式
C19H22O3
mdl
——
分子量
298.382
InChiKey
IMIRMQOMASATMY-BHHKEHIISA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    1.7
  • 重原子数:
    22
  • 可旋转键数:
    1
  • 环数:
    4.0
  • sp3杂化的碳原子比例:
    0.63
  • 拓扑面积:
    51.2
  • 氢给体数:
    0
  • 氢受体数:
    3

反应信息

  • 作为反应物:
    描述:
    androsta-3,5-diene-7,17,19-trione氢氧化钾 作用下, 以 甲醇 为溶剂, 反应 4.0h, 以38%的产率得到estra-3,5-diene-7,17-dione
    参考文献:
    名称:
    Synthesis of Androst-5-en-7-ones and Androsta-3,5-dien-7-ones and Their Related 7-Deoxy Analogs as Conformational and Catalytic Probes for the Active Site of Aromatase
    摘要:
    A series of androst-5-en-7-ones and androsta-3,5-dien-7-ones and their 7-deoxy derivatives, respectively, were synthesized and tested for their abilities to inhibit aromatase in human placental microsomes. All the steroids inhibited the enzyme in a competitive manner with K-i's ranging from 0.058 to 45 mu M. The inhibitory activities of 17-oxo compounds were much more potent than those of the corresponding 17 beta-alcohols in each series. Steroids having an oxygen function (hydroxy or carbonyl) at C-19 were less potent inhibitors than the corresponding parent compounds having a 19-methyl group. 3,5-Dien-7-one 24 and its 19-hydroxy and 19-oxo derivatives (12 and 13) as well as 19-oxo-5-en-7-one 3 caused a time-dependent inactivation of aromatase only in the presence of NADPH in which the k(inact) values of 19-als 3 and 13 (0.143 and 0.189 min(-1), respectively) were larger than those of the corresponding 19-methyl (23 and 24) and 19-hydroxy (1 and 12) steroids, respectively. 19-Nor-5-en-7-one 4 but not its 3,5-diene derivative 14 also inactivated the enzyme in a time-dependent manner. In contrast, 7-deoxy steroids 21 and 27, having a 19-methyl group, did not cause it. The inactivations were prevented by the substrate androstenedione, and no significant effects of L-cysteine on the inactivations were observed in each case. The results suggest that oxygenation at C-19 would be at least in part involved in the inactivations caused by the inhibitors 23 and 24. The conjugated enone structures should play a critical role in the inactivation sequences.
    DOI:
    10.1021/jm00040a012
  • 作为产物:
    描述:
    19-hydroxyandrosta-3,5-diene-7,17-dione 在 重铬酸吡啶 作用下, 以 二氯甲烷 为溶剂, 反应 5.0h, 以30%的产率得到androsta-3,5-diene-7,17,19-trione
    参考文献:
    名称:
    Synthesis of Androst-5-en-7-ones and Androsta-3,5-dien-7-ones and Their Related 7-Deoxy Analogs as Conformational and Catalytic Probes for the Active Site of Aromatase
    摘要:
    A series of androst-5-en-7-ones and androsta-3,5-dien-7-ones and their 7-deoxy derivatives, respectively, were synthesized and tested for their abilities to inhibit aromatase in human placental microsomes. All the steroids inhibited the enzyme in a competitive manner with K-i's ranging from 0.058 to 45 mu M. The inhibitory activities of 17-oxo compounds were much more potent than those of the corresponding 17 beta-alcohols in each series. Steroids having an oxygen function (hydroxy or carbonyl) at C-19 were less potent inhibitors than the corresponding parent compounds having a 19-methyl group. 3,5-Dien-7-one 24 and its 19-hydroxy and 19-oxo derivatives (12 and 13) as well as 19-oxo-5-en-7-one 3 caused a time-dependent inactivation of aromatase only in the presence of NADPH in which the k(inact) values of 19-als 3 and 13 (0.143 and 0.189 min(-1), respectively) were larger than those of the corresponding 19-methyl (23 and 24) and 19-hydroxy (1 and 12) steroids, respectively. 19-Nor-5-en-7-one 4 but not its 3,5-diene derivative 14 also inactivated the enzyme in a time-dependent manner. In contrast, 7-deoxy steroids 21 and 27, having a 19-methyl group, did not cause it. The inactivations were prevented by the substrate androstenedione, and no significant effects of L-cysteine on the inactivations were observed in each case. The results suggest that oxygenation at C-19 would be at least in part involved in the inactivations caused by the inhibitors 23 and 24. The conjugated enone structures should play a critical role in the inactivation sequences.
    DOI:
    10.1021/jm00040a012
点击查看最新优质反应信息

文献信息

  • Synthesis of Androst-5-en-7-ones and Androsta-3,5-dien-7-ones and Their Related 7-Deoxy Analogs as Conformational and Catalytic Probes for the Active Site of Aromatase
    作者:Mitsuteru Numazawa、Ayako Mutsumi、Mii Tachibana、Kumiko Hoshi
    DOI:10.1021/jm00040a012
    日期:1994.7
    A series of androst-5-en-7-ones and androsta-3,5-dien-7-ones and their 7-deoxy derivatives, respectively, were synthesized and tested for their abilities to inhibit aromatase in human placental microsomes. All the steroids inhibited the enzyme in a competitive manner with K-i's ranging from 0.058 to 45 mu M. The inhibitory activities of 17-oxo compounds were much more potent than those of the corresponding 17 beta-alcohols in each series. Steroids having an oxygen function (hydroxy or carbonyl) at C-19 were less potent inhibitors than the corresponding parent compounds having a 19-methyl group. 3,5-Dien-7-one 24 and its 19-hydroxy and 19-oxo derivatives (12 and 13) as well as 19-oxo-5-en-7-one 3 caused a time-dependent inactivation of aromatase only in the presence of NADPH in which the k(inact) values of 19-als 3 and 13 (0.143 and 0.189 min(-1), respectively) were larger than those of the corresponding 19-methyl (23 and 24) and 19-hydroxy (1 and 12) steroids, respectively. 19-Nor-5-en-7-one 4 but not its 3,5-diene derivative 14 also inactivated the enzyme in a time-dependent manner. In contrast, 7-deoxy steroids 21 and 27, having a 19-methyl group, did not cause it. The inactivations were prevented by the substrate androstenedione, and no significant effects of L-cysteine on the inactivations were observed in each case. The results suggest that oxygenation at C-19 would be at least in part involved in the inactivations caused by the inhibitors 23 and 24. The conjugated enone structures should play a critical role in the inactivation sequences.
查看更多