摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

1,3,5-三亚硝基-1,3,5-六氢化三嗪 | 13980-04-6

中文名称
1,3,5-三亚硝基-1,3,5-六氢化三嗪
中文别名
六氢化-1,3,5-三亚硝基-1,3,5-三嗪;1,3,5-三亚硝基-1,3,5-三氮杂环己烷
英文名称
1,3,5-trinitroso-1,3,5-triazinane
英文别名
1,3,5-trinitroso-1,3,5-triazacyclohexane;hexahydro-1,3,5-trinitroso-1,3,5-triazine
1,3,5-三亚硝基-1,3,5-六氢化三嗪化学式
CAS
13980-04-6
化学式
C3H6N6O3
mdl
——
分子量
174.119
InChiKey
HFWOSHMLDRSIDN-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

物化性质

  • 熔点:
    102.85°C
  • 沸点:
    305.07°C (rough estimate)
  • 密度:
    1.7121 (rough estimate)

计算性质

  • 辛醇/水分配系数(LogP):
    0.2
  • 重原子数:
    12
  • 可旋转键数:
    0
  • 环数:
    1.0
  • sp3杂化的碳原子比例:
    1.0
  • 拓扑面积:
    98
  • 氢给体数:
    0
  • 氢受体数:
    9

安全信息

  • 海关编码:
    2933699090

SDS

SDS:cca3c9b8d65aa94ec4f6a24394a9a4f5
查看

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量
  • 下游产品
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    描述:
    参考文献:
    名称:
    Brockman et al., Canadian Journal of Research, Section B: Chemical Sciences, 1949, vol. 27, p. 469,470
    摘要:
    DOI:
  • 作为产物:
    描述:
    乌洛托品盐酸 、 sodium nitrite 作用下, 以20%的产率得到1,3,5-三亚硝基-1,3,5-六氢化三嗪
    参考文献:
    名称:
    Nitrosation Products of Hexamethylenetetramine
    摘要:
    Two nitrosation products of hexamethylenetetramine, namely 1,3,5-trinitrosoheuahydro-1,3,5-triazine (1) and 3,7-dinitroso-1,3,5,7-tetrazabicyclo[3.3.1]nonane (2), were synthesized, It is shown that both compounds in vitro at 37 degrees C (1 h, pH 7.4) form nitric oxide at a rate of 3.1% (1) or 1.3% (2), respectively. In rats (60 mg/kg p.o.) both compound inhibit thrombus formation in arterioles (1: 20%; 2: 16%) and venules (1: 18%; 2: 9%). Compound 2 does not influence the blood pressure in spontaneously hypertensive rats.
    DOI:
    10.1002/(sici)1521-4184(19997)332:7<255::aid-ardp255>3.0.co;2-r
点击查看最新优质反应信息

文献信息

  • Mechanisms of Nitramine Thermolysis
    作者:J. C. Oxley、A. B. Kooh、R. Szekeres、W. Zheng
    DOI:10.1021/j100079a019
    日期:1994.7
    The thermal decomposition of a number of nitramines was studied in dilute solution and in the melt, The nitramines included acyclic mononitramines [dimethylnitramine (DMN), diethylnitramine (DEN), dipropylnitramine (DPN), and diisopropylnitramine (DIPN)], cyclic mononitramines [N-nitropiperidine (NPIP) and N-nitropyrrolidine (NPyr)], cyclic dinitramines [N-dinitropiperazine (pDNP), 1,3-dinitro-1,3-diazacyclopentane (DNI), and 1,3-dinitro-1,3-diazacyclohexane (mDNP)], and 1,3,5-trinitro-1,3,5-triazocyclohexane (RDX), octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX), hexanitrohexaazaisowurtzitane (HNIW), and 1,3,3-trinitroazetidine (TNAZ). For the acyclic and cyclic mono- and dinitramines, the corresponding nitrosamines were the only or major condensed-phase product. Kinetics and activation parameters were determined for the thermolysis of dilute solutions (0.01-1.0 wt %) over the range 200-300 degrees C. The thermolyses were found to be first-order with the rate constants unaffected by the use of deuterated solvent. As the nitramines became more complex than dimethylnitramine (DMN), the rate of decomposition increased and the product distribution became more complex. As the length of the aliphatic chain increased (DMN < DEN < DPN), the rate of thermolysis increased, yet nitrosamine remained the only observed condensed-phase product. When a secondary carbon was attached to the N-nitramine (DIPN) rather than the primary (DPN), the rate of decomposition increased and a new condensed-phase product was observed. Among the cyclic nitramines, the rate of decomposition increased as the number of NNO2 groups increased (NPIP < pDNP; NPyr < DNI; mDMP < RDX). The position of the nitramine groups affected the decomposition: meta NNO2 groups (mDNP) decomposed faster than para (pDNP). Ring strain decreased stability: mDNP < DNI; HMX < RDX. In complex nitramines, the increase in decomposition rate, the appearance of new products, and the change in the relative importance of nitrosamine and of N-2 and N2O are attributed to new decomposition routes available to them. However, since complex nitramines (e.g. RDX) maintain first-order kinetics and since most have activation energies in the range of 40-50 kcal/mol, it is believed that the triggering mechanism remains N-NO2 homolysis. Intramolecular hydrogen transfer is also considered an important mode of nitramine decomposition.
  • ——
    作者:G. A. Lyushnina、A. Yu. Bryukhanov、M. Turkina、K. V. Malakhov、E. L. Golod
    DOI:10.1023/a:1012443003868
    日期:——
    Potassium amidosulfate reacts with formaldehyde at pH 7-12 to afford a mixture of dipotassium 4-hydroxy-1,3-diazabutane-1,3-disulfonate hydrate and tripotassium 6-hydroxy-1,3,5-triazahexane-1,3,5-trisulfonate HO(CH2NSO3K)(n) . H2O (n = 2, 3). The reaction of the same compounds at pH 1-3 gives diammonium 1,3,5,7-tetraazabicyclo[3.3.1]nonane-3,7-disulfonic acid sulfate dihydrate.
  • Evidence of an Elimination Mechanism in Thermal Decomposition of Hexahydro-1,3,5-trinitro-1,3,5-triazine and Related Compounds under High Pressure in Solution
    作者:Jiang Wang、Kay R. Brower、Darren L. Naud
    DOI:10.1021/jo970775z
    日期:1997.12.1
    The thermal decomposition of a number of six-membered cyclic nitramines and nitrosamines was studied under pressures up to 1.1 GPa in dilute solution (THF). The studied nitramines and nitrosamines include hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) hexahydro-5-methyl-1,3,5-trinitropyrimidine, hexahydro-1,3,5,5-tetranitropyrimidine, 1,3,3,5,5-pentanitrbpiperidine, and hexahydro-1,3,5-trinitroso-1,3,5-triazine (TRDX). In all cases negative activation volumes have been found, indicating that thermolysis is not a homolytic process. On the basis of negative activation volumes, detection of aromatic products, low decomposition temperature (low E-a), and order of thermal stability, we propose that these cyclic nitramines and nitrosamines are thermally decomposed through the elimination of HNO2 or HNO under-high pressure. By summarizing our current and previous work, we find that the decomposition pathway of nitrosamines and nitrosamines is dependent not only on the reaction conditions but also on structural features.
  • Thermal decomposition of energetic materials. 4. Deuterium isotope effects and isotopic scrambling (H/D, 13C/18O, 14N/15N) in condensed-phase decomposition of 1,3,5-trinitrohexahydro-s-triazine (RDX)
    作者:Richard Behrens、Suryanarayana Bulusu
    DOI:10.1021/j100201a037
    日期:1992.10
    The inter- vs intramolecular origin of the products formed in the thermal decomposition of 1,3,5-trinitrohexahydro-s-triazine (RDX) has been traced by isotopic crossover experiments using mixtures of differently labeled analogues of RDX. The isotopic analogues of RDX used in the experiments include H-2, C-13, N-15, and O-18. The fraction of isotopic scrambling and the extent of the deuterium kinetic isotope effect (DKIE) are reported for the different thermal decomposition products. Isotopic scrambling is not observed for the N-N bond in N2O and only in small amounts (7%) in the C-H bonds in CH2O, consistent with a mechanism of their formation through methylene nitramine precursors. A product, oxy-s-triazine (OST, C3H3N3O) does not undergo isotopic scrambling in H/D, N-14/N-15, or C-13/O-18 experiments, and its rate of formation exhibits a DKIE of 1.5. These results are consistent with the formation of OST via unimolecular decomposition of RDX. Another product, 1-nitroso-3,5-dinitrohexahydro-s-triazine (ONDNTA, C3H6N6O5) is found to be formed with complete scrambling of the N-NO bond, suggesting an N-N bond cleavage and a radical recombination process in its formation. One of the hydrogen containing products, H2O, exhibits a DKIE of 1.5 +/- 0.1. In contrast, CH2O and ONDNTA have DKIEs of 1.05 +/- 0.1 and 1.05 +/- 0.2, respectively, indicating that hydrogen transfer is not involved in the rate-limiting step of the reaction pathway leading to the formation of these products.
  • Knudsen, Chemische Berichte, 1914, vol. 47, p. 2699
    作者:Knudsen
    DOI:——
    日期:——
查看更多

表征谱图

  • 氢谱
    1HNMR
  • 质谱
    MS
  • 碳谱
    13CNMR
  • 红外
    IR
  • 拉曼
    Raman
查看更多图谱数据,请前往“摩熵化学”平台
mass
查看更多图谱数据,请前往“摩熵化学”平台
查看更多图谱数据,请前往“摩熵化学”平台
查看更多图谱数据,请前往“摩熵化学”平台
  • 峰位数据
  • 峰位匹配
  • 表征信息
Shift(ppm)
Intensity
查看更多图谱数据,请前往“摩熵化学”平台
Assign
Shift(ppm)
查看更多图谱数据,请前往“摩熵化学”平台
测试频率
样品用量
溶剂
溶剂用量
查看更多图谱数据,请前往“摩熵化学”平台

同类化合物

黑索金 羟乙基六氢均三嗪 甲醛肟三聚物盐酸盐 溴美那明 溴异氰脲酸类味精盐 扁桃酸乌洛托品 季铵盐-15 四氢化-5-(2-羟乙基)-1,3-双(羟甲基)-1,3,5-三嗪-2(1H)-酮 四氢-5-丙基-1,3,5-三嗪-2(1H)-酮 四氢-5-(2-羟基乙基)-1,3-二(羟基甲基)-1,3,5-三嗪-2(1H)-硫酮 四氢-5-(2-羟基乙基)-1,3,5-三嗪-2(1H)-硫酮 四氢-3,5-二甲基-1,3,5-三嗪-1(2H)-丙胺 四氢-1,3-双(羟基甲基)-5-丙基-1,3,5-三嗪-2(1H)-酮 四氢-1,3-二(羟基甲基)-1,3,5-三嗪-2(1H)-酮 四氢-1,3,5-三嗪-2(1H)-酮 发泡剂H 六氢三甲基-S-三嗪 六氢-2,4,6-三甲基-1,3,5-三嗪 六氢-1-亚硝基-3,5-二硝基-1,3,5-三嗪 六氢-1,3,5-三辛基-1,3,5-三嗪 六氢-1,3,5-三环己基-S-三嗪 六氢-1,3,5-三戊基-1,3,5-三嗪 六氢-1,3,5-三嗪-1,3,5-三(乙腈) 六氢-1,3,5-三[3-(环氧乙烷基甲氧基)-1-氧代丙基]-1,3,5-三嗪 六亚甲基四胺氢碘酸盐 六亚甲基四胺单硼烷 六亚甲基四胺,二硝酸盐 全氟-1,3,5-三氮杂环己烷 全氘代六甲桥基四胺 乌洛托品 三溴化环己烷四胺 alpha,alpha'-二甲基-1,3,5-三嗪-1,3,5(2H,4H,6H)-三乙醇 A,A’,A’’-三甲基-1,3,5-三嗪-1,3,5(2H,4H,6H)-三乙醇 6-乙基-6-甲基-1,3,5-三嗪烷-2,4-二酮 5-硝基屈 5-甲基-1,3,5-三嗪-2-硫酮 5-异丙基-1,3,5-三嗪烷-2-硫酮 5-叔-丁基-1,3,5-三嗪烷-2-酮 5-乙基-1,3-二(羟基甲基)-1,3,5-三嗪烷-2-酮 5-乙基-1,3,5-三嗪烷-2-硫酮 5-丁基四氢-1,3-二(羟甲基)-1,3,5-三嗪-2(1H)-酮 5-丁基-1,3,5-三嗪烷-2-硫酮 5-(2-羟基乙基)-1,3,5-三嗪烷-2-酮 3,7-二硝基-1,3,5,7-四氮杂双环[3.3.1]壬烷 3,7-二乙酰基-1,3,5,7-四氮杂二环[3.3.1]壬烷 3,4,5,6-四氢-5-甲基-1,3,5-三嗪-2(1H)-酮 2-氯乙基膦酸六亚甲基四胺盐 2,4-二羰基六氢-1,3,5-三嗪 2,4,6-三乙基-1,3,5-三嗪烷 1-硝基-3,5-二亚硝基-1,3,5-三氮杂环己烷