作者:E. Ahmed、H.A. Abdusalam
DOI:10.1007/s100510070218
日期:2000.7
The social percolation model is generalized to include the propagation of two mutually exclusive competing effects on a one-dimensional ring and a two-dimensional square lattice. It is shown that the result depends significantly on which effect propagates first i.e. it is a non-commutative phenomenon. Then the propagation of one effect is studied on a small network. It generalizes the work of Moore and Newman of a disease spread to the case where the susceptibility of the population is random. Three variants of the Domany-Kinzel model are given. One of them (delayed) does not have a chaotic region for some value of the delay weight.