Species-Specific Inactivation of Triosephosphate Isomerase from Trypanosoma brucei: Kinetic and Molecular Dynamics Studies
作者:Alejandra Vázquez-Raygoza、Lucia Cano-González、Israel Velázquez-Martínez、Pedro Trejo-Soto、Rafael Castillo、Alicia Hernández-Campos、Francisco Hernández-Luis、Jesús Oria-Hernández、Adriana Castillo-Villanueva、Claudia Avitia-Domínguez、Erick Sierra-Campos、Mónica Valdez-Solana、Alfredo Téllez-Valencia
DOI:10.3390/molecules22122055
日期:——
Human African Trypanosomiasis (HAT), a disease that provokes 2184 new cases a year in Sub-Saharan Africa, is caused by Trypanosoma brucei. Current treatments are limited, highly toxic, and parasite strains resistant to them are emerging. Therefore, there is an urgency to find new drugs against HAT. In this context, T. brucei depends on glycolysis as the unique source for ATP supply; therefore, the enzyme triosephosphate isomerase (TIM) is an attractive target for drug design. In the present work, three new benzimidazole derivatives were found as TbTIM inactivators (compounds 1, 2 and 3) with an I50 value of 84, 82 and 73 µM, respectively. Kinetic analyses indicated that the three molecules were selective when tested against human TIM (HsTIM) activity. Additionally, to study their binding mode in TbTIM, we performed a 100 ns molecular dynamics simulation of TbTIM-inactivator complexes. Simulations showed that the binding of compounds disturbs the structure of the protein, affecting the conformations of important domains such as loop 6 and loop 8. In addition, the physicochemical and drug-like parameters showed by the three compounds suggest a good oral absorption. In conclusion, these molecules will serve as a guide to design more potent inactivators that could be used to obtain new drugs against HAT.
人类非洲锥虫病(HAT)是一种由布氏锥虫引起的疾病,每年在撒哈拉以南非洲地区新增病例 2184 例。目前的治疗方法有限,毒性大,而且对这些方法产生抗药性的寄生虫菌株也在不断出现。因此,寻找新的 HAT 药物迫在眉睫。在这种情况下,布氏锥虫依赖糖酵解作为供应 ATP 的唯一来源;因此,三糖磷酸异构酶(TIM)是一个具有吸引力的药物设计靶点。本研究发现了三种新的苯并咪唑衍生物(化合物 1、2 和 3)可作为 TbTIM 的灭活剂,其 I50 值分别为 84、82 和 73 µM。动力学分析表明,在测试人类 TIM(HsTIM)活性时,这三种分子具有选择性。此外,为了研究它们与 TbTIM 的结合模式,我们对 TbTIM-灭活剂复合物进行了 100 ns 的分子动力学模拟。模拟结果表明,化合物的结合会扰乱蛋白质的结构,影响重要结构域(如环 6 和环 8)的构象。此外,这三种化合物所显示的理化和类药物参数表明它们具有良好的口服吸收性。总之,这些分子将作为设计更有效灭活剂的指南,可用于获得抗 HAT 的新药物。