摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

2,3-双(2,6-二异丙苯亚氨基)丁烷 | 74663-77-7

中文名称
2,3-双(2,6-二异丙苯亚氨基)丁烷
中文别名
N,N′-双(2,6-二异丙基苯基)-2,3-丁二亚胺;2,3-双-(2,6-二异丙基苯脒)丁烷;2,3,4-三氟苯腈;二乙酰基双(2,6-异丙基苯基亚胺)
英文名称
1,4-bis(2,6-diisopropylphenyl)-2,3-dimethyl-1,4-diazabuta-1,3-diene
英文别名
N,N'-bis(2,6-diisopropylphenyl)-1,4-diaza-2,3-dimethyl-1,3-butadiene;N,N′-bis(2,6-diisopropylphenyl)-1,4-diaza-2,3-dimethyl-1,3-butadiene;N,N'-bis-(2,6-diisopropylphenyl)butane-2,3-diimine;bis(2,6-diisopropylaniline)butane-2,3-diimine;2,3-Bis(2,6-diisopropylphenylimino)butane;2-N,3-N-bis[2,6-di(propan-2-yl)phenyl]butane-2,3-diimine
2,3-双(2,6-二异丙苯亚氨基)丁烷化学式
CAS
74663-77-7
化学式
C28H40N2
mdl
MFCD01862435
分子量
404.639
InChiKey
YUFQUBWPYIPRHZ-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

物化性质

  • 熔点:
    104-106°C

计算性质

  • 辛醇/水分配系数(LogP):
    7.8
  • 重原子数:
    30
  • 可旋转键数:
    7
  • 环数:
    2.0
  • sp3杂化的碳原子比例:
    0.5
  • 拓扑面积:
    24.7
  • 氢给体数:
    0
  • 氢受体数:
    2

安全信息

  • 安全说明:
    S26,S36/37/39
  • 危险类别码:
    R36/37/38
  • 海关编码:
    2921590090
  • 危险性描述:
    H413
  • 储存条件:
    存于惰性气体中的室温环境

SDS

SDS:d1ec7367424c9545be5fd5f8cd3334cf
查看

Section 1. IDENTIFICATION OF THE SUBSTANCE/MIXTURE
Product identifiers
Product name : 2,3-Bis(2,6-diisopropylphenylimino)butane
CAS-No. : 74663-77-7


Section 2. HAZARDS IDENTIFICATION
Classification of the substance or mixture
Classification according to Regulation (EC) No 1272/2008 [EU-GHS/CLP]
Chronic aquatic toxicity (Category 4)
Not a hazardous substance or mixture according to EC-directives 67/548/EEC or 1999/45/EC.
Label elements
Labelling according Regulation (EC) No 1272/2008 [CLP]
Pictogram none
Signal word none
Hazard statement(s)
May cause long lasting harmful effects to aquatic life.
Precautionary statement(s) none
Supplemental Hazard none
Statements
Caution - substance not yet tested completely.
Other hazards - none

Section 3. COMPOSITION/INFORMATION ON INGREDIENTS
Substances
: N,N′-Bis(2,6-diisopropylphenyl)-2,3-butanediimine
Synonyms
Diacetyl-bis(2,6-isopropylphenylimine)
Formula : C28H40N2
Molecular Weight : 404,63 g/mol

Section 4. FIRST AID MEASURES
Description of first aid measures
General advice
Consult a physician. Show this safety data sheet to the doctor in attendance.
If inhaled
If breathed in, move person into fresh air. If not breathing, give artificial respiration. Consult a physician.
In case of skin contact
Wash off with soap and plenty of water. Consult a physician.
In case of eye contact
Flush eyes with water as a precaution.
If swallowed
Never give anything by mouth to an unconscious person. Rinse mouth with water. Consult a physician.
Most important symptoms and effects, both acute and delayed
To the best of our knowledge, the chemical, physical, and toxicological properties have not been
thoroughly investigated.
Indication of any immediate medical attention and special treatment needed
no data available

Section 5. FIREFIGHTING MEASURES
Extinguishing media
Suitable extinguishing media
Use water spray, alcohol-resistant foam, dry chemical or carbon dioxide.
Special hazards arising from the substance or mixture
Carbon oxides, nitrogen oxides (NOx)
Advice for firefighters
Wear self contained breathing apparatus for fire fighting if necessary.
Further information
no data available

Section 6. ACCIDENTAL RELEASE MEASURES
Personal precautions, protective equipment and emergency procedures
Avoid dust formation. Avoid breathing vapors, mist or gas. Ensure adequate ventilation.
Environmental precautions
Prevent further leakage or spillage if safe to do so. Do not let product enter drains. Discharge into the
environment must be avoided.
Methods and materials for containment and cleaning up
Pick up and arrange disposal without creating dust. Sweep up and shovel. Keep in suitable, closed
containers for disposal.
Reference to other sections
For disposal see section 13.

Section 7. HANDLING AND STORAGE
Precautions for safe handling
Provide appropriate exhaust ventilation at places where dust is formed.Normal measures for preventive fire
protection.
Conditions for safe storage, including any incompatibilities
Store in cool place. Keep container tightly closed in a dry and well-ventilated place.
Store under inert gas.
Specific end uses
no data available

Section 8. EXPOSURE CONTROLS/PERSONAL PROTECTION
Control parameters
Components with workplace control parameters
Exposure controls
Appropriate engineering controls
Handle in accordance with good industrial hygiene and safety practice. Wash hands before breaks and
at the end of workday.
Personal protective equipment
Eye/face protection
Use equipment for eye protection tested and approved under appropriate government standards
such as NIOSH (US) or EN 166(EU).
Skin protection
Handle with gloves. Gloves must be inspected prior to use. Use proper glove removal technique
(without touching glove's outer surface) to avoid skin contact with this product. Dispose of
contaminated gloves after use in accordance with applicable laws and good laboratory practices.
Wash and dry hands.
The selected protective gloves have to satisfy the specifications of EU Directive 89/686/EEC and
the standard EN 374 derived from it.
Body Protection
Choose body protection in relation to its type, to the concentration and amount of dangerous
substances, and to the specific work-place., The type of protective equipment must be selected
according to the concentration and amount of the dangerous substance at the specific workplace.
Respiratory protection
Respiratory protection is not required. Where protection from nuisance levels of dusts are desired,
use type N95 (US) or type P1 (EN 143) dust masks. Use respirators and components tested and
approved under appropriate government standards such as NIOSH (US) or CEN (EU).

Section 9. PHYSICAL AND CHEMICAL PROPERTIES
Information on basic physical and chemical properties
a) Appearance Form: Fine crystals with lumps
Colour: light yellow
b) Odour no data available
c) Odour Threshold no data available
d) pH no data available
e) Melting point/freezing no data available
point
f) Initial boiling point and no data available
boiling range
g) Flash point no data available
h) Evaporation rate no data available
i) Flammability (solid, gas) no data available
j) Upper/lower no data available
flammability or
explosive limits
k) Vapour pressure no data available
l) Vapour density no data available
m) Relative density no data available
n) Water solubility practically insoluble
o) Partition coefficient: n- log Pow: 10,79
octanol/water
p) Autoignition no data available
temperature
q) Decomposition no data available
temperature
r) Viscosity no data available
s) Explosive properties no data available
t) Oxidizing properties no data available
Other safety information
no data available

Section 10. STABILITY AND REACTIVITY
Reactivity
no data available
Chemical stability
no data available
Possibility of hazardous reactions
no data available
Conditions to avoid
no data available
Incompatible materials
Strong oxidizing agents
Hazardous decomposition products
Other decomposition products - no data available

Section 11. TOXICOLOGICAL INFORMATION
Information on toxicological effects
Acute toxicity
no data available
Skin corrosion/irritation
no data available
Serious eye damage/eye irritation
no data available
Respiratory or skin sensitization
no data available
Germ cell mutagenicity
no data available
Carcinogenicity
IARC: No component of this product present at levels greater than or equal to 0.1% is identified as
probable, possible or confirmed human carcinogen by IARC.
Reproductive toxicity
no data available
Specific target organ toxicity - single exposure
no data available
Specific target organ toxicity - repeated exposure
no data available
Aspiration hazard
no data available
Potential health effects
Inhalation May be harmful if inhaled. May cause respiratory tract irritation.
Ingestion May be harmful if swallowed.
Skin May be harmful if absorbed through skin. May cause skin irritation.
Eyes
May cause eye irritation.
Signs and Symptoms of Exposure
To the best of our knowledge, the chemical, physical, and toxicological properties have not been
thoroughly investigated.
Additional Information
RTECS: Not available

Section 12. ECOLOGICAL INFORMATION
Toxicity
no data available
Persistence and degradability
no data available
Bioaccumulative potential
no data available
Mobility in soil
no data available
Results of PBT and vPvB assessment
no data available
Other adverse effects
no data available

Section 13. DISPOSAL CONSIDERATIONS
Waste treatment methods
Product
Offer surplus and non-recyclable solutions to a licensed disposal company. Contact a licensed
professional waste disposal service to dispose of this material. Dissolve or mix the material with a
combustible solvent and burn in a chemical incinerator equipped with an afterburner and scrubber.
Contaminated packaging
Dispose of as unused product.

Section 14. TRANSPORT INFORMATION
UN number
ADR/RID: - IMDG: - IATA: -
UN proper shipping name
ADR/RID: Not dangerous goods
IMDG: Not dangerous goods
IATA: Not dangerous goods
Transport hazard class(es)
ADR/RID: - IMDG: - IATA: -
Packaging group
ADR/RID: - IMDG: - IATA: -
Environmental hazards
ADR/RID: no IMDG Marine pollutant: no IATA: no
Special precautions for user
no data available

Section 15. REGULATORY INFORMATION
This safety datasheet complies with the requirements of Regulation (EC) No. 1907/2006.
Safety, health and environmental regulations/legislation specific for the substance or mixture
no data available
Chemical Safety Assessment


SECTION 16 - ADDITIONAL INFORMATION
N/A

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量
  • 下游产品
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    描述:
    2,3-双(2,6-二异丙苯亚氨基)丁烷六氯化钨 作用下, 以 二氯甲烷-D2 为溶剂, 反应 36.0h, 以24.7%的产率得到2-氯丙烷
    参考文献:
    名称:
    允许N-芳基α-二亚胺与高价金属氯化物直接相互作用:一锅WCl 6促进喹喔啉鎓盐的形成
    摘要:
    通过使WCl 6与N-(2,6-二异丙基苯基)α-二亚胺在室温下于CH 2 Cl 2中反应,探索了高价金属氯化物作为氯化剂和氧化剂的全部潜能。这些α-二亚胺通过分子内C–N偶联经历了前所未有的转化为喹喔啉鎓阳离子。
    DOI:
    10.1039/c7dt03226a
  • 作为产物:
    描述:
    [(2,6-iPrC6H3NC(Me)C(Me)N-2,6-iPrC6H3)Pd(CH3)(Cl)] 生成 2,3-双(2,6-二异丙苯亚氨基)丁烷
    参考文献:
    名称:
    将氢键相互作用与空间和电子修饰结合在一起,以使热健壮的α-二亚胺钯催化剂用于乙烯(共)聚合
    摘要:
    对于具有高活性的乙烯和极性单体的(共)聚合,开发具有热稳定性的钯基催化剂是一项持续的挑战。结合氢键相互作用与空间和电子修饰,已合成和表征了具有不同取代基(X = OMe,H,Cl,Br和I)的基于二苯并barrelene的α-二亚胺钯配合物。钯配合物的空间效应通过其掩埋体积来阐明,而取代基的电子效应则通过取代基和1的哈米特常数(σ)得以阐明。钯结合的甲基的1 H NMR分析。氢键相互作用(H⋯Cl和H⋯OMe)由氯和甲氧基取代的中性和阳离子钯配合物的单晶结构证实。受到空间和电子效应以及氢键的影响,氯取代的钯催化剂在高达100°C的乙烯聚合温度下具有良好的热稳定性,而甲氧基取代的钯催化剂表现出优异的耐高温和极性性能并能够在80°C下使乙烯和丙烯酸甲酯(MA)进行共聚,以生产出高MA掺入量高达9.5 mol%的共聚物。
    DOI:
    10.1039/d0cy01617a
  • 作为试剂:
    描述:
    烟碱三乙氧基硅烷 、 [(NEt3)Ni-(O(pivaloyl))2]22,3-双(2,6-二异丙苯亚氨基)丁烷 作用下, 以 四氢呋喃 为溶剂, 45.0 ℃ 、405.33 kPa 条件下, 反应 24.0h, 生成 2,6-dideuterio-3-[(2S)-1-methylpyrrolidin-2-yl]pyridine
    参考文献:
    名称:
    N-杂环中镍的现场选择性催化氢同位素交换及其在药物Tri化中的应用
    摘要:
    描述了一种镍催化的氮杂芳烃中C(sp 2)-H键的位点选择性氢同位素交换(HIE)的镍催化方法,并将其应用于药物的ti代反应。α-亚胺镍氢化物配合物[(的iPr DI)的Ni(μ 2 -H)] 2(的iPr DI = Ñ,Ñ使用时' -双(2,6-二异丙基苯基)-2,3- butanediimine)介导有效的HIE作为单一组分的预催化剂或由易于获得的和空气稳定的金属和配体前体(iPr DI,[(NEt 3)Ni(OPiv)2 ] 2(Piv =新戊酰)和(EtO)3SiH)。与现有方法相比,镍催化剂具有明显的优势,包括:(i)在低D 2或T 2下的高HIE活性压力; (ii)对官能团的耐受性,包括芳基氯,醇,仲酰胺和砜;(iii)具有富氮分子如化学治疗的伊马替尼的活性;(iv)在其他受阻金属催化剂通常无法达到的空间位阻位置促进HIE的能力。代表性活性药物成分的tri化活性超出了药物吸收,分布,代谢和排泄研究(1
    DOI:
    10.1021/acscatal.8b03717
点击查看最新优质反应信息

文献信息

  • Linking Low-Coordinate Ge(II) Centers via Bridging Anionic N-Heterocyclic Olefin Ligands
    作者:Emanuel Hupf、Felix Kaiser、Paul A. Lummis、Matthew M. D. Roy、Robert McDonald、Michael J. Ferguson、Fritz E. Kühn、Eric Rivard
    DOI:10.1021/acs.inorgchem.9b01449
    日期:2020.2.3
    heterocyclic manifolds. Reduction of a dimeric [RGeCl]2 species (R = anionic NHO, [(MeCNDipp)2C═CH]-; Dipp = 2,6-iPr2C6H3) did not give the expected acyclic RGeGeR analogue of an alkyne, but rather ligand migration/disproportionation transpired to yield the known diorganogermylene R2Ge and Ge metal. This process was examined computationally, and the ability of the reported anionic NHO to undergo atom migration
    我们介绍了空间受限的N杂环烯烃(NHO)的大规模合成,并说明了其去质子化形式充当阴离子四电子桥联配体的能力。所产生的多中心捐赠能力已被用于紧密连接两个低氧化态的Ge(II)中心,从而形成由Ge2C2杂环歧管支持的Ge-Cl-Ge和Ge-H-Ge键合环境。二聚体[RGeCl] 2的还原(R =阴离子NHO,[(MeCNDipp)2C═CH]-; Dipp = 2,6-iPr2C6H3)没有得到炔烃的预期无环RGeGeR类似物,而是配体迁移/发生歧化产生已知的二有机锗R 2 Ge和Ge金属。此过程已通过计算进行了检查,
  • Heteroatom-substituted secondary phosphine oxides for Suzuki-Miyaura cross-coupling reactions
    作者:Yu-Chang Chang、Yi-Chang Lee、Meng-Fan Chang、Fung-E. Hong
    DOI:10.1016/j.jorganchem.2016.02.007
    日期:2016.4
    calculated in order to comprehend the electronic properties for these two rotamers for each HAPAs. Besides, the steric effect of HAPAs was estimated in terms of the Percent Buried Volume (%Vbur). This model has shown that 7a has similar steric property to that of PCy3, which is an effective ligand in Suzuki-coupling reactions.
    制备并表征了几种二取代的二亚胺(3a - 3f)和杂原子取代的不饱和仲氧化膦(HASPO,6a - 6f)。化合物6a - 6f被认为是预配体,因为它们能够互变异构为杂原子取代的次膦酸(HAPA,7a - 7f)。从化合物6e与PdBr 2的反应中观察到出乎意料的3e-配位的二溴化钯8e。预配体6a,6c和6e的分子结构,以及钯配合物8e通过单晶X射线衍射法测定。当将预配体6a应用于钯催化的Suzuki-Miyaura交叉偶联反应时,可获得令人满意的产率。密度泛函理论被雇用来检查HASPO的电子性质6A-6F预配体,其相应的1,3-二- ñ -取代的互变异构体7A-7F,饱和对方7AS的7A。化合物7a是Suzuki-Miyaura反应中最有效和最可靠的配体,其高位孤对(LP)分子轨道(HOMO-1)证实了这一点。7c的LP轨道–7f位于较低的HOMO-5。对于每个7c – 7f,找到了两
  • Mechanistic Studies of Single-Step Styrene Production Catalyzed by Rh Complexes with Diimine Ligands: An Evaluation of the Role of Ligands and Induction Period
    作者:Weihao Zhu、Zhongwen Luo、Junqi Chen、Chang Liu、Lu Yang、Diane A. Dickie、Naiming Liu、Sen Zhang、Robert J. Davis、T. Brent Gunnoe
    DOI:10.1021/acscatal.9b01480
    日期:2019.8.2
    catalytic benzene alkenylation using different diimine ligated Rh(I) acetate complexes and Cu(OAc)2 as the oxidant revealed statistically identical results in terms of activity and product selectivity. Under ethylene pressure, two representative diimine ligated rhodium(I) acetate complexes were demonstrated to exchange the diimine ligand with ethylene rapidly to form [Rh(μ-OAc)(η2-C2H4)2]2 and free diimine
    使用不同的二亚胺连接的乙酸Rh(I)络合物和Cu(OAc)2作为氧化剂的催化苯烯基化反应的研究表明,就活性和产物选择性而言,统计学上相同的结果。下的乙烯压力,两个代表性二亚胺连接铑(I)配合物乙酸被证明与乙烯迅速交换二亚胺配体与形式的[Rh(μ-OAC)(η 2 -C 2 H ^ 4)2 ] 2和自由二亚胺。因此,得出的结论是,在催化条件下,二亚胺配体不太可能与活性Rh催化剂配位。在使用市售的铜(OAC)催化条件下150℃ 2作为氧化剂时,铑[Rh(μ-OAC)(η 2-C 2 H 4)2 ] 2经历快速分解以形成催化惰性和不溶性Rh物质,然后逐渐溶解不溶性Rh形成可溶Rh,对苯乙烯生产具有活性。因此,在某些条件下观察到的诱导期很可能是由于形成不溶的Rh(快速),然后再溶解Rh(缓慢)所致。通过使用已预热的可溶性Cu(II)氧化剂或Cu(OAc)2,可以抑制Rh的分解过程并保持催化活性Rh
  • Rare-Earth-Catalyzed Selective 1,4-Hydrosilylation of Branched 1,3-Enynes Giving Tetrasubstituted Silylallenes
    作者:Wufeng Chen、Chunhui Jiang、Jianying Zhang、Jiaqi Xu、Lin Xu、Xiufang Xu、Jianfeng Li、Chunming Cui
    DOI:10.1021/jacs.1c04689
    日期:2021.8.25
    reactivities. Catalytic 1,4-hydrosilylation of 1,3-enynes may present the straightforward strategy for synthesis of silylallenes. However, the transition-metal-catalyzed reaction has not been successful due to poor selectivity and very limited substrate scopes. We report here the efficient and selective 1,4-hydrosilylation of branched 1,3-enynes enabled by the ene-diamido rare-earth ate catalysts using both alkyl
    艾伦烯是有机合成和药物化学中的多功能合成子,因为它们具有多种反应性。1,3-烯炔的催化 1,4-氢化硅烷化可能是合成甲硅烷基丙二烯的直接策略。然而,由于选择性差和底物范围非常有限,过渡金属催化的反应并未成功。我们在此报告了支链 1,3-烯炔的高效和选择性 1,4-氢化硅烷化,由烯-二氨基稀土催化剂使用烷基和芳基氢硅烷实现,导致独家形成四取代的甲硅烷基丙二烯。进行了氘化反应、动力学研究和 DFT 计算以研究可能的机制,揭示了高路易斯酸度、大离子半径和稀土催化剂的结构的关键作用。
  • Ytterbium(III) Complexes Coordinated by Dianionic 1,4-Diazabutadiene Ligands
    作者:Boris G. Shestakov、Tatyana V. Mahrova、Joulia Larionova、Jêrome Long、Anton V. Cherkasov、Georgy K. Fukin、Konstantin A. Lyssenko、Wolfgang Scherer、Christoph Hauf、Tatiana V. Magdesieva、Oleg A. Levitskiy、Alexander A. Trifonov
    DOI:10.1021/om501121s
    日期:2015.4.13
    Cp#2Yb(THF)2 with the corresponding DADs in a 1:1 molar ratio. These reactions are accompanied by oxidation of the Yb(II) to Yb(III), cleavage of one Cp#–Yb bond, oxidation of cyclopentadienyl anion, and reduction of the diazabutadiene to dianionic form. It was found that the substituents by the DAD nitrogens (2,6-iPr2C6H3 vs 2,6-Me2C6H3) and imino carbons (H vs Me) do not affect the reaction outcome
    一系列新的Yb(III)配合物XYb(DAD)2–(L)(X = C 5 Me 5,C 5 Me 4 H,N(SiMe 3)2,t BuO; DAD = 2,6-R” 2 ç 6 ħ 3 N = C(R') - C(R')= NC 6 H ^ 3 R“ 2 -2,6,R'= H,Me中,R”= Me中,我镨; L = THF,合成并表征了以二价阴离子形式的氧化还原活性二氮杂丁二烯配体配位的dme)。半三明治复合物Cp # Yb(DAD)2–(THF)(Cp # = C 5 Me 5,通过碳纤体Cp #2 Yb(THF)2与相应的DAD以1:1的摩尔比反应合成了C 5 Me 4 H)。这些反应伴随着Yb(II)到Yb(III)的氧化,一个Cp # -Yb键的裂解,环戊二烯基阴离子的氧化以及二氮杂丁二烯还原为双阴离子形式。已发现DAD氮(2,6- i Pr 2 C 6 H 3与2,6-Me 2
查看更多

同类化合物

(βS)-β-氨基-4-(4-羟基苯氧基)-3,5-二碘苯甲丙醇 (S)-(-)-7'-〔4(S)-(苄基)恶唑-2-基]-7-二(3,5-二-叔丁基苯基)膦基-2,2',3,3'-四氢-1,1-螺二氢茚 (S)-盐酸沙丁胺醇 (S)-3-(叔丁基)-4-(2,6-二甲氧基苯基)-2,3-二氢苯并[d][1,3]氧磷杂环戊二烯 (S)-2,2'-双[双(3,5-三氟甲基苯基)膦基]-4,4',6,6'-四甲氧基联苯 (S)-1-[3,5-双(三氟甲基)苯基]-3-[1-(二甲基氨基)-3-甲基丁烷-2-基]硫脲 (R)富马酸托特罗定 (R)-(-)-盐酸尼古地平 (R)-(+)-7-双(3,5-二叔丁基苯基)膦基7''-[((6-甲基吡啶-2-基甲基)氨基]-2,2'',3,3''-四氢-1,1''-螺双茚满 (R)-3-(叔丁基)-4-(2,6-二苯氧基苯基)-2,3-二氢苯并[d][1,3]氧杂磷杂环戊烯 (R)-2-[((二苯基膦基)甲基]吡咯烷 (N-(4-甲氧基苯基)-N-甲基-3-(1-哌啶基)丙-2-烯酰胺) (5-溴-2-羟基苯基)-4-氯苯甲酮 (5-溴-2-氯苯基)(4-羟基苯基)甲酮 (5-氧代-3-苯基-2,5-二氢-1,2,3,4-oxatriazol-3-鎓) (4S,5R)-4-甲基-5-苯基-1,2,3-氧代噻唑烷-2,2-二氧化物-3-羧酸叔丁酯 (4-溴苯基)-[2-氟-4-[6-[甲基(丙-2-烯基)氨基]己氧基]苯基]甲酮 (4-丁氧基苯甲基)三苯基溴化磷 (3aR,8aR)-(-)-4,4,8,8-四(3,5-二甲基苯基)四氢-2,2-二甲基-6-苯基-1,3-二氧戊环[4,5-e]二恶唑磷 (2Z)-3-[[(4-氯苯基)氨基]-2-氰基丙烯酸乙酯 (2S,3S,5S)-5-(叔丁氧基甲酰氨基)-2-(N-5-噻唑基-甲氧羰基)氨基-1,6-二苯基-3-羟基己烷 (2S,2''S,3S,3''S)-3,3''-二叔丁基-4,4''-双(2,6-二甲氧基苯基)-2,2'',3,3''-四氢-2,2''-联苯并[d][1,3]氧杂磷杂戊环 (2S)-(-)-2-{[[[[3,5-双(氟代甲基)苯基]氨基]硫代甲基]氨基}-N-(二苯基甲基)-N,3,3-三甲基丁酰胺 (2S)-2-[[[[[[((1R,2R)-2-氨基环己基]氨基]硫代甲基]氨基]-N-(二苯甲基)-N,3,3-三甲基丁酰胺 (2-硝基苯基)磷酸三酰胺 (2,6-二氯苯基)乙酰氯 (2,3-二甲氧基-5-甲基苯基)硼酸 (1S,2S,3S,5S)-5-叠氮基-3-(苯基甲氧基)-2-[(苯基甲氧基)甲基]环戊醇 (1-(4-氟苯基)环丙基)甲胺盐酸盐 (1-(3-溴苯基)环丁基)甲胺盐酸盐 (1-(2-氯苯基)环丁基)甲胺盐酸盐 (1-(2-氟苯基)环丙基)甲胺盐酸盐 (-)-去甲基西布曲明 龙胆酸钠 龙胆酸叔丁酯 龙胆酸 龙胆紫 龙胆紫 齐达帕胺 齐诺康唑 齐洛呋胺 齐墩果-12-烯[2,3-c][1,2,5]恶二唑-28-酸苯甲酯 齐培丙醇 齐咪苯 齐仑太尔 黑染料 黄酮,5-氨基-6-羟基-(5CI) 黄酮,6-氨基-3-羟基-(6CI) 黄蜡,合成物 黄草灵钾盐