Synthesis and biological evaluation of 4-imidazolylflavans as nonsteroidal aromatase inhibitors
摘要:
A series of 4-imidazolylflavans having a variety of substituents on the 2-phenyl ring was synthesized and investigated for their inhibitory effect against aromatase. Structure activity relationships of these compounds were determined. An additional chlorine atom or a cyano group at the 4' position did not enhance aromatase inhibition as well as a 3'-hydroxyl group. The influence of an additional 4'-hydroxyl group depends on the substitution pattern of A ring. Among these molecules, 4'-hydroxy-4-imidazolyl-7-methoxyflavan is only 2.2-fold less active than the letrozole (as assessed by IC50 values). Letrozole is used as the first-line therapy for metastatic breast cancer. (C) 2004 Elsevier Inc. All rights reserved.
Purpose. Aromatase inhibitors are known to prevent the conversion of androgens to estrogens and play a significant role in the treatment of estrogen dependent diseases such as breast cancer. Some flavonoids have been reported as potent aromatase inhibitors: therefore. in an effort to develop novel anti breast cancer agents. B ring substituted flavanones with a 7-methoxy group on A ring were synthesized and tested to assess their ability to inhibit aromatase activity and to determine the optimal B ring substitution pattern.Methods. A series of flavanones was prepared by cyclisation of 2'-hydroxychalcones previously obtained by Claisen-Schmidt condensation and the aromatase inhibitory activity or these compounds was investigated using human placental microsomes and radiolabeled [1.2,6,7-H-3]-androstenedione as substrate.Results. Almost all flavanones exhibited inhibitory effect on the aromatase activity but their potency was dependent on their B ring subtitution pattern. Hydroxylation at position 3' and/or 4' enhanced the anti-aromatase activity thus, 3'.4'-dihydroxy-7-methoxyflavanone was found to he twice more potent than aminoglutethimide. the first aromatase inhibitor clinically used.Conclusions. These results indicated that these flavanones could be considered as potential anti breast cancer agents through the inhibition of aromatase activity and allowed us to select some of these Compounds as skeleton for the development of flavonoid structurally-related aromatase inhibitors.