A Prodrug Approach Toward Cancer-Related Carbonic Anhydrase Inhibition
摘要:
The selective inhibition of cancer-associated human carbonic anhydrase (CA) enzymes, specifically CA IX and XII, has been validated as a mechanistically novel approach toward personalized cancer management. Herein we report the design and synthesis of a panel of 24 novel glycoconjugate primary sulfonamides that bind to the extracellular catalytic domain of CA IX and XII. These compounds were synthesized from variably acylated glycopyranosyl azides and either 3- or 4-ethynyl benzene sulfonamide using Cu(I)-catalyzed azide alkyne cycloaddition (CuAAC). The CA enzyme inhibition profile for all compounds was determined, while in vitro metabolic stability, plasma stability, and plasma protein binding for a representative set of compounds was measured. Our findings demonstrate the influence of the differing acyl groups on these key biopharmaceutical properties, confirming that acyl group protected carbohydrate-based sulfonamides have potential as prodrugs for selectively targeting the extracellular cancer-associated CA enzymes.
Synthesis of acylated glycoconjugates as templates to investigate in vitro biopharmaceutical properties
摘要:
A series of novel glycopyranosyl azides were synthesised wherein the carbohydrate moiety was peracylated with four acetyl, propionyl, butanoyl, pentanoyl (valeryl) or 3-methylbutanoyl (isovaleryl) ester linked groups. A panel of glycoconjugates was synthesised from these glycopyranosyl azides using copper-catalysed azide-alkyne cycloaddition. The in vitro metabolic stability, plasma stability and plasma protein binding was then measured to establish the impact of the different acyl group when presented on a common scaffold. The acetyl, propionyl and butanoyl esters exhibited metabolism consistent with esterase processing, and various mono-, di- and tri-acylated hydrolysis products as well as the fully hydrolysed compound were detected. In contrast, the pentanoyl and 3-methylbutanoyl esters were stable. (c) 2012 Elsevier Ltd. All rights reserved.