摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

zinc glutarate | 331968-18-4

中文名称
——
中文别名
——
英文名称
zinc glutarate
英文别名
glutaric acid ; zinc (II)-compound;Glutarsaeure; Zink(II)-Verbindung;ZINC;pentanedioate
zinc glutarate化学式
CAS
331968-18-4
化学式
C5H6O4*Zn
mdl
——
分子量
195.49
InChiKey
DYFYMUWSBJLWCY-UHFFFAOYSA-L
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    -2.35
  • 重原子数:
    10
  • 可旋转键数:
    2
  • 环数:
    0.0
  • sp3杂化的碳原子比例:
    0.6
  • 拓扑面积:
    80.3
  • 氢给体数:
    0
  • 氢受体数:
    4

反应信息

  • 作为产物:
    描述:
    戊二酸zinc(II) oxide溶剂黄146 作用下, 以 甲苯 为溶剂, 生成 zinc glutarate
    参考文献:
    名称:
    用于 CO2 和环氧化物共聚的表面活化戊二酸锌
    摘要:
    戊二酸锌 (ZnGA) 是一种很有前途的催化剂,它可以从 CO 2和环氧化物中形成聚合物,从而有助于 CO 2利用技术的发展和未来的可持续性发展。在聚合物工业中商业化 ZnGA 的障碍之一是其低催化活性。在这项研究中,我们引入了活化的二维 (2D) ZnGA 以提高其在聚合中的催化活性。用H 3 Co(CN) 6处理形貌受控的二维ZnGA ,制备了多孔颗粒型共改性ZnGA(Co-ZnGA)。二维 ZnGA 的形貌是 H 3 Co(CN) 6活化的先决条件. Co-ZnGA的催化性能通过各种环氧化物和CO 2的共聚来评价,并表现出855、1540、1190和148 g g-cat -1与环氧丙烷、1,2-环氧己烷、1,2的催化活性。 -环氧丁烷和氧化苯乙烯。本研究提供了一种使用二维 ZnGA 代替传统 ZnGA 来提高 CO 2聚合催化活性的新策略。
    DOI:
    10.1039/d2dt03007a
  • 作为试剂:
    描述:
    sucrose二氧化碳zinc glutarate碳酸氢钠 作用下, 以 为溶剂, 102.0 ℃ 、120.0 kPa 条件下, 反应 11.0h, 以85.13%的产率得到5-羟甲基糠醛
    参考文献:
    名称:
    一种由CO2-液态水体系制备5-羟甲基糠醛的 方法
    摘要:
    本发明公开了一种由CO 2 ‑液态水体系制备5‑羟甲基糠醛的方法,其特征在于以CO 2 作为主催化剂,在单一水溶液体系、常压和加热条件下催化可再生的碳水化合物脱水分解制备5‑羟甲基糠醛。通过加入助催化剂,增加主催化剂CO 2 在反应体系中的溶解力和提高其催化活性,从而实现碳水化合物在常压条件下高效催化转为为5‑羟甲基糠醛。本发明具有选择性高、效率高、工艺简单和、成本低和可操作性强的特点;此外还避免了使用高压装置及强酸催化剂腐蚀设备、酸液排放污染环境的缺陷,为5‑羟甲基糠醛的产业化提供了一种可靠的新技术。
    公开号:
    CN106045948B
点击查看最新优质反应信息

文献信息

  • Fabrication of biomimetic poly(propylene carbonate) scaffolds by using carbon dioxide as a solvent, monomer and foaming agent
    作者:Xia Zhong、Fariba Dehghani
    DOI:10.1039/c2gc35608b
    日期:——
    The aim of this study was to develop an environmentally friendly process for the fabrication of three dimensional (3D) biomimetic scaffolds from biodegradable poly(propylene carbonate) (PPC). Prior to production of scaffolds, PPC was synthesized using a one-pot process in which the zinc glutarate catalyst was first fabricated in a supercritical CO2 system. The scaffolds were then prepared by gas foaming/salt leaching followed by aminolysis and layer-by-layer (LBL) gelatin assembly on the surface. The pore size and interconnectivity were controlled by the variation of gas foaming process parameters such as temperature, CO2 pressure, depressurization rate and particle size of salt (NaCl). The pore size was within the range of 116 ± 53 to 418 ± 84 μm and the porosity was between 69.8 and 92.3%. The results of micro-CT scan analysis demonstrated that porosity and pore interconnectivity were enhanced by increasing the pore size. However, the compressive modulus of hydrated scaffolds was decreased from 380 ± 90 to 200 ± 50 kPa, when the pore size was increased from 232 ± 91 to 411 ± 108 μm. The results of fluorescence microscopy demonstrated that gelatin was uniformly deposited on the 3D scaffolds. Surface modification of hydrophobic PPC scaffolds substantially increased the fibroblast cells attachment, penetration, and proliferation. The results of this study demonstrated the feasibility of eliminating toxic organic solvents in the synthesis of a solid based catalyst and processing PPC polymer into tissue scaffolds. The clean technology developed will be of great value for large scale production of biodegradable PPC that can be used for many purposes such as packaging products and plastic bags. In addition, it was shown that PPC can be considered as an alternative biomaterial for tissue engineering applications.
    本研究旨在开发一种环境友好型工艺,利用可生物降解的聚(碳酸丙烯酯)(PPC)制造三维(3D)仿生支架。在生产支架之前,采用一锅法合成聚丙烯碳酸酯,首先在超临界二氧化碳系统中制造戊二酸锌催化剂。然后通过气体发泡/盐浸制备支架,接着进行氨解并在表面逐层(LBL)组装明胶。通过改变气发泡工艺参数,如温度、二氧化碳压力、减压速率和盐(氯化钠)的粒度,来控制孔径和互连性。孔径在 116 ± 53 至 418 ± 84 μm 之间,孔隙率在 69.8 至 92.3% 之间。显微 CT 扫描分析结果表明,孔隙率和孔隙互连性随着孔径的增大而增强。然而,当孔径从 232 ± 91 μm 增加到 411 ± 108 μm 时,水合支架的压缩模量从 380 ± 90 kPa 下降到 200 ± 50 kPa。荧光显微镜的结果表明,明胶均匀地沉积在三维支架上。疏水性 PPC 支架的表面改性大大提高了成纤维细胞的附着、穿透和增殖能力。这项研究的结果证明了在合成固体催化剂和将 PPC 聚合物加工成组织支架的过程中去除有毒有机溶剂的可行性。所开发的清洁技术对于大规模生产可生物降解的 PPC 具有重要价值,这种 PPC 可用于包装产品和塑料袋等多种用途。此外,研究还表明,PPC 可被视为组织工程应用的替代生物材料。
  • 一种用于聚碳酸亚丙酯生产的柱状结构戊二酸锌催化剂的制备方法
    申请人:李俊海
    公开号:CN113200845A
    公开(公告)日:2021-08-03
    本发明涉及一种用于聚碳酸亚丙酯生产的柱状结构戊二酸锌催化剂的制备方法,其步骤如下:1)将溶解有十六烷基三甲基溴化铵的戊二酸钠水溶液,倾入由醋酸水溶液溶解的氯化锌溶液中,在搅拌下反应,反应结束时PH值不大于3.7;2)将反应液过滤,得到固定的戊二酸锌晶体滤层;3)依次用氯化钠盐水、脱盐水以及醚类洗涤晶体滤层;4)将洗涤后的戊二酸锌晶体进行真空振动干燥。通过以上特定工艺获得的柱状结构戊二酸锌晶体,催化二氧化碳和环氧丙烷共聚,反应时间8小时,催化效率可达63.94g聚合物/g催化剂。
  • Organic zinc catalyst and preparation method thereof
    申请人:LG CHEM, LTD.
    公开号:US09803048B2
    公开(公告)日:2017-10-31
    An organic zinc catalyst and a preparation method thereof are provided. According to the present invention, the organic zinc catalyst has a smaller thickness and a larger surface area to exhibit more improved activity in polymerization for the preparation of a poly(alkylene carbonate) resin.
    本发明提供了一种有机锌催化剂及其制备方法。根据本发明,该有机锌催化剂具有较小的厚度和较大的表面积,在聚合制备聚碳酸酯树脂时表现出更高的活性。
  • 一种高温下具备高选择性的羧酸锌催化剂的制备方法
    申请人:合肥普力先进材料科技有限公司
    公开号:CN117776905A
    公开(公告)日:2024-03-29
    本发明提供一种高温下具备高选择性的羧酸锌催化剂的制备方法,羧酸锌催化剂具有适宜的粒径、比表面积和优异的结构稳定性,意外的表现出高且稳定的催化活性,催化活性平均每小时高达15‑20g共聚物/g催化剂,在循环使用3次后催化活性降低不足2%,可以全程高效的催化反应,解决了现有技术的羧酸锌催化剂在催化反应数小时后活性明显下降的问题;羧酸锌催化剂在80℃以上的高温条件下催化二氧化碳和环氧化合物共聚时具有高选择性,制备的共聚物中碳酸酯键含量高达95%以上,副产物碳酸丙烯酯含量≤3%,使得产物质量高副产物含量低,羧酸锌催化剂可以在比现有工艺高的温度条件下高效率的制备聚碳酸亚丙酯,显著缩短反应时长,适合工业化生产应用。
  • X-ray absorption and NMR spectroscopic investigations of zinc glutarates prepared from various zinc sources and their catalytic activities in the copolymerization of carbon dioxide and propylene oxide
    作者:Jong-Seong Kim、Moonhor Ree、Tae Joo Shin、Oc Hee Han、Sung June Cho、Yong-Taek Hwang、Joong Yeon Bae、Jae Min Lee、Ryong Ryoo、Heesoo Kim
    DOI:10.1016/s0021-9517(03)00082-4
    日期:2003.8
    The local and microstructures of zinc glutarates synthesized from various zinc sources were investigated by X-ray absorption and solid-state carbon-13 nuclear magnetic resonance spectroscopy, and related to their catalytic activities in the copolymerization of carbon dioxide and propylene oxide. It was found that the local structure around the Zn atoms of the zinc glutarate catalysts consists basically of tetrahedrally coordinated carboxyl oxygen atoms with a Zn-O bond distance in the range 1.95-1.96 Angstrom, and that the nearest neighbor Zn atom distance is 3.19-3.23 Angstrom. These results suggest that the catalysts have a network structure composed of layers interconnected by glutarate ligands. However, the first-shell structures of the catalysts tested are somewhat different, which might originate from differences in the catalysts' overall crystallinity and crystal quality (crystal size and perfection) produced by their different synthetic routes. The surface areas of the catalysts also varied with synthetic route. In the copolymerization, one catalyst with low surface area but the highest crystallinity and best crystal quality shows the highest catalytic activity, which is contrary to the usual expectation of increased catalytic activity with increased catalyst surface area. Therefore, the catalytic activities of zinc glutarates in the copolymerization seem to depend primarily on their morphological structures rather than on their surface areas. The surface areas of zinc glutarates may play a crucial role in improving the catalytic activity in the copolymerization when they first meet the morphological requirements (i.e., high crystallinity and crystal quality). (C) 2003 Elsevier Inc. All rights reserved.
查看更多

同类化合物

(甲基3-(二甲基氨基)-2-苯基-2H-azirene-2-羧酸乙酯) (±)-盐酸氯吡格雷 (±)-丙酰肉碱氯化物 (d(CH2)51,Tyr(Me)2,Arg8)-血管加压素 (S)-(+)-α-氨基-4-羧基-2-甲基苯乙酸 (S)-阿拉考特盐酸盐 (S)-赖诺普利-d5钠 (S)-2-氨基-5-氧代己酸,氢溴酸盐 (S)-2-[3-[(1R,2R)-2-(二丙基氨基)环己基]硫脲基]-N-异丙基-3,3-二甲基丁酰胺 (S)-1-(4-氨基氧基乙酰胺基苄基)乙二胺四乙酸 (S)-1-[N-[3-苯基-1-[(苯基甲氧基)羰基]丙基]-L-丙氨酰基]-L-脯氨酸 (R)-乙基N-甲酰基-N-(1-苯乙基)甘氨酸 (R)-丙酰肉碱-d3氯化物 (R)-4-N-Cbz-哌嗪-2-甲酸甲酯 (R)-3-氨基-2-苄基丙酸盐酸盐 (R)-1-(3-溴-2-甲基-1-氧丙基)-L-脯氨酸 (N-[(苄氧基)羰基]丙氨酰-N〜5〜-(diaminomethylidene)鸟氨酸) (6-氯-2-吲哚基甲基)乙酰氨基丙二酸二乙酯 (4R)-N-亚硝基噻唑烷-4-羧酸 (3R)-1-噻-4-氮杂螺[4.4]壬烷-3-羧酸 (3-硝基-1H-1,2,4-三唑-1-基)乙酸乙酯 (2S,3S,5S)-2-氨基-3-羟基-1,6-二苯己烷-5-N-氨基甲酰基-L-缬氨酸 (2S,3S)-3-((S)-1-((1-(4-氟苯基)-1H-1,2,3-三唑-4-基)-甲基氨基)-1-氧-3-(噻唑-4-基)丙-2-基氨基甲酰基)-环氧乙烷-2-羧酸 (2S)-2,6-二氨基-N-[4-(5-氟-1,3-苯并噻唑-2-基)-2-甲基苯基]己酰胺二盐酸盐 (2S)-2-氨基-3-甲基-N-2-吡啶基丁酰胺 (2S)-2-氨基-3,3-二甲基-N-(苯基甲基)丁酰胺, (2S,4R)-1-((S)-2-氨基-3,3-二甲基丁酰基)-4-羟基-N-(4-(4-甲基噻唑-5-基)苄基)吡咯烷-2-甲酰胺盐酸盐 (2R,3'S)苯那普利叔丁基酯d5 (2R)-2-氨基-3,3-二甲基-N-(苯甲基)丁酰胺 (2-氯丙烯基)草酰氯 (1S,3S,5S)-2-Boc-2-氮杂双环[3.1.0]己烷-3-羧酸 (1R,4R,5S,6R)-4-氨基-2-氧杂双环[3.1.0]己烷-4,6-二羧酸 齐特巴坦 齐德巴坦钠盐 齐墩果-12-烯-28-酸,2,3-二羟基-,苯基甲基酯,(2a,3a)- 齐墩果-12-烯-28-酸,2,3-二羟基-,羧基甲基酯,(2a,3b)-(9CI) 黄酮-8-乙酸二甲氨基乙基酯 黄荧菌素 黄体生成激素释放激素 (1-5) 酰肼 黄体瑞林 麦醇溶蛋白 麦角硫因 麦芽聚糖六乙酸酯 麦根酸 麦撒奎 鹅膏氨酸 鹅膏氨酸 鸦胆子酸A甲酯 鸦胆子酸A 鸟氨酸缩合物