A room-temperature dimerization of crotonates into 2-ethylidene-3-methylpentanedioates provides a sustainable route to difunctional monomers for step-growth polymerizations. We report two such dimerizations: (1) an organocatalytic dimerization using the N-heterocyclic carbene 1,3-diisopropyl-4,5-dimethylimidazol-2-ylidene ((IPr2Me2)-Pr-i) and (2) a rapid dimerization (under 15 s to full conversion) using potassium t-butoxide in THF. In addition to unsaturated diesters, the resulting dimers can be easily converted to other step-growth monomers; namely, their corresponding diacids and saturated diesters.
The N-heterocycliccarbene (NHC)-catalyzed dimerizations of a variety of disubstituted Michael acceptors have been investigated. In addition to the tail-to-tail dimerization of methacrylates reported previously, the scope of vinylidene substrates expands to γ-methyl-α-methylene-γ-butyrolactone, dimethyl 2-methylenepentanedioate, dimethyl itaconate, methacrylamides, and 2-isopropenylbenzoxazole, none