摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

6-hydroxyhexyl β-D-glucopyranoside | 59080-44-3

中文名称
——
中文别名
——
英文名称
6-hydroxyhexyl β-D-glucopyranoside
英文别名
6'-hydroxyhexyl-O-β-D-glucopyranoside;(2R,3R,4S,5S,6R)-2-(6-hydroxyhexoxy)-6-(hydroxymethyl)oxane-3,4,5-triol
6-hydroxyhexyl β-D-glucopyranoside化学式
CAS
59080-44-3
化学式
C12H24O7
mdl
——
分子量
280.318
InChiKey
CQVLQFUMKUOVFD-RMPHRYRLSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    -1.4
  • 重原子数:
    19
  • 可旋转键数:
    8
  • 环数:
    1.0
  • sp3杂化的碳原子比例:
    1.0
  • 拓扑面积:
    120
  • 氢给体数:
    5
  • 氢受体数:
    7

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    描述:
    6-hydroxyhexyl β-D-glucopyranoside乙酸酐吡啶4-二甲氨基吡啶 作用下, 反应 1.0h, 以100%的产率得到6-[(2R,3R,4S,5R,6R)-3,4,5-triacetyloxy-6-(acetyloxymethyl)oxan-2-yl]oxyhexyl acetate
    参考文献:
    名称:
    Chemoenzymatic Synthesis of n-Hexyl and O-.BETA.-D-Xylopyranosyl-(1.RAR.6)-.BETA.-D-glucopyranosides
    摘要:
    利用杏仁来源的固定化β-葡萄糖苷酶(EC 3.2.1.21)在合成预聚物ENTP-4000的辅助下,将1,6-辛二醇(5)与D-葡萄糖(3)直接进行β-葡萄糖苷化反应,以61.4%的产率得到了单-β-葡萄糖苷(6),再通过化学酶法将其转化为正己基β-D-吡喃葡萄糖苷(1)。接着,正己基β-D-吡喃葡萄糖苷类似物(13)与2,3,4-三-O-乙酰基-β-D-木糖苷类似物(14)进行偶联,随后去保护,合成了正己基O-β-D-木吡喃糖基-(1→6)-β-D-葡萄吡喃糖苷(2),该化合物在光谱数据和比旋光度上与天然产物2完全一致。
    DOI:
    10.1248/cpb.52.1105
  • 作为产物:
    描述:
    1,6-己二醇葡萄糖 在 β-glucosidase 作用下, 以 为溶剂, 反应 144.0h, 以67.8%的产率得到6-hydroxyhexyl β-D-glucopyranoside
    参考文献:
    名称:
    Chemoenzymatic Synthesis of n-Hexyl and O-.BETA.-D-Xylopyranosyl-(1.RAR.6)-.BETA.-D-glucopyranosides
    摘要:
    利用杏仁来源的固定化β-葡萄糖苷酶(EC 3.2.1.21)在合成预聚物ENTP-4000的辅助下,将1,6-辛二醇(5)与D-葡萄糖(3)直接进行β-葡萄糖苷化反应,以61.4%的产率得到了单-β-葡萄糖苷(6),再通过化学酶法将其转化为正己基β-D-吡喃葡萄糖苷(1)。接着,正己基β-D-吡喃葡萄糖苷类似物(13)与2,3,4-三-O-乙酰基-β-D-木糖苷类似物(14)进行偶联,随后去保护,合成了正己基O-β-D-木吡喃糖基-(1→6)-β-D-葡萄吡喃糖苷(2),该化合物在光谱数据和比旋光度上与天然产物2完全一致。
    DOI:
    10.1248/cpb.52.1105
点击查看最新优质反应信息

文献信息

  • Simple Synthesis of .BETA.-D-Glycopyranosides Using .BETA.-Glycosidase from Almonds
    作者:Katsumi Kurashima、Mikio Fujii、Yoshiteru Ida、Hiroyuki Akita
    DOI:10.1248/cpb.52.270
    日期:——
    Enzymatic glycosidation of twenty-one kinds of alcohols (n-hepanol, n-octanol, 2-phenylethanol, 3-phenylpropanol, 4-phenylbutanol, 5-phenylpentanol, 6-phenylhexanol, furfury alcohol, 2-pyridinemethanol, isobutanol, isopentanol, p-methoxycinnamylalcohol) including secondary alcohols (isopropanol, cyclohexanol, 1-phenylethanol) and 1,ω-alkanediols (1,5-pentanediol, 1,6-hexanediol, 1,7-heptanediol, 1,8-octanediol, 1,9-nonanediol), salicyl alcohol and 4-nitrophenyl β-D-glucopyranoside (5) using β-glucosidase from almonds stereoselectively gave the corresponding β-D-glucopyranosides in moderate yield.
    酶促糖苷化反应对二十一种醇类(正庚醇、正辛醇、2-苯乙醇、3-苯丙醇、4-苯丁醇、5-苯戊醇、6-苯己醇、呋喃醇、2-吡啶甲醇、异丁醇、异戊醇、对甲氧基肉桂醇)进行,其中包括次级醇(异丙醇、环己醇、1-苯乙醇)和1,ω-烷二醇(1,5-戊二醇、1,6-己二醇、1,7-庚二醇、1,8-辛二醇、1,9-壬二醇),水杨醇及4-硝基苯基β-D-葡萄糖吡喃苷(5),使用来自杏仁的β-葡萄糖苷酶选择性地生成了相应的β-D-葡萄糖吡喃苷,产率适中。
  • Enzymatic glycosidation in dry media under microwave irradiation
    作者:Mirjana Gelo-Pujic、Eryka Guibé-Jampel、André Loupy、Antonio Trincone
    DOI:10.1039/a700144d
    日期:——
    Glycosidase catalysed reversed hydrolysis and transglycosidations in dry media under focused microwave irradiation and classical heating conditions are described.
    在聚焦微波照射和传统加热条件下,干介质中糖苷酶催化的反向水解及转糖苷反应已被详细描述。
  • Synthesis of glucosidic derivatives with a spacer arm by reverse hydrolysis using almond β-D-glucosidase
    作者:Gabin Vic、David H.G. Crout
    DOI:10.1016/s0957-4166(00)80397-3
    日期:1994.12
    Glucosidase-catalysed synthesis of glucosides with a spacer arm on the anomeric carbon is reported. By using the acceptor as solvent at an elevated temperature, much higher yields of product have been obtained than previously observed.
    报道了在异头碳上具有间隔臂的葡糖苷酶催化的葡糖苷的合成。通过在高温下使用受体作为溶剂,已经获得了比以前观察到的产物高得多的产率。
  • Glycosidase-catalysed synthesis of glycosides by an improved procedure for reverse hydrolysis: application to the chemoenzymatic synthesis of galactopyranosyl-(1→4)-O-α-galactopyranoside derivatives
    作者:Gabin Vic、Jeremy J. Hastings、David H.G. Crout
    DOI:10.1016/0957-4166(96)00238-8
    日期:1996.7
    beta-Galactosidase from Aspergillus oryzae, alpha-galactosidase from Aspergillus niger, beta-mannosidase from He[ir pomatia and beta-glucosidase from almond were used to synthesise different glycosides by reverse hydrolysis: Glc beta O(CH2)(6)OH 1 was obtained in 61% yield, beta-D-Glc-O(CH2)(3)CH=CH2 2 in 50% yield, beta-D-Glc-O(CH2)(2)Si(Me)(3) 3 in 11% yield, beta-D-Gal-O(CH2)(6)OH 4 in 48% yield, beta-D-Gal-O(CH2)(3)CH=CH2 5 in 22% yield, alpha-D-Gal-O(CH2)(6)OH 6 in 47% yield, alpha-D-Gal-O(CH2)(3)CH=CH2 7 in 37% yield and beta-D-ManO(CH2)(6)OH 8 in 12% yield. Using the appropriate glycosides methyl O-(2,3,4,6-tetra-O-benzyl-alpha-galactopyranosyl)-(1-->4)-2,3,6-tri-O-benzoyl-1-O-alpha-D-galactopyranoside 11 and 6'-benzoylhexyl-O-(2,3,4,6-tetra alpha-O-benzyl-(1-->4)-2,3,6-tri-O-benzoyl-1-O-beta-D-galactopyranoside 15 were synthesised. This chemoenzymatic approach avoided at least four chemical steps that would have been necessary in a conventional synthesis. Copyright (C) 1996 Elsevier Science Ltd
  • Chemoenzymatic Synthesis of n-Hexyl and O-.BETA.-D-Xylopyranosyl-(1.RAR.6)-.BETA.-D-glucopyranosides
    作者:Masashi Kishida、Miho Nishiuchi、Keisuke Kato、Hiroyuki Akita
    DOI:10.1248/cpb.52.1105
    日期:——
    Direct β-glucosidation between 1,6-octanediol (5) and D-glucose (3) using the immobilized β-glucosidase (EC 3.2.1.21) from almonds with the synthetic prepolymer ENTP-4000 gave a mono-β-glucoside (6) in 61.4% yield, which was converted into the n-hexyl β-D-glucopyranoside (1) by means of a chemoenzymatic method. The coupling of the n-hexyl β-D-glucopyranoside congener (13) and 2,3,4-tri-O-acetyl-β-D-xylosyl congener (14), followed by deprotection, afforded the synthetic n-hexyl O-β-D-xylopyranosyl-(1→6)-β-D-glucopyranoside (2), which was identical to the natural 2 with respect to the spectral data and specific rotation.
    利用杏仁来源的固定化β-葡萄糖苷酶(EC 3.2.1.21)在合成预聚物ENTP-4000的辅助下,将1,6-辛二醇(5)与D-葡萄糖(3)直接进行β-葡萄糖苷化反应,以61.4%的产率得到了单-β-葡萄糖苷(6),再通过化学酶法将其转化为正己基β-D-吡喃葡萄糖苷(1)。接着,正己基β-D-吡喃葡萄糖苷类似物(13)与2,3,4-三-O-乙酰基-β-D-木糖苷类似物(14)进行偶联,随后去保护,合成了正己基O-β-D-木吡喃糖基-(1→6)-β-D-葡萄吡喃糖苷(2),该化合物在光谱数据和比旋光度上与天然产物2完全一致。
查看更多