liquids (ILs) on the Menschutkin reaction between N-methylimidazole and benzyl halides has been investigated. Hammett correlations have been used to obtain information on the reaction mechanism of benzyl chlorides in ionic and molecular solvents. The solventeffects on this reaction have been examined using both multiparameter linearsolvationenergyrelationships and theoretical calculations. These
作者:Ilkka Kilpeläinen、Haibo Xie、Alistair King、Mari Granstrom、Sami Heikkinen、Dimitris S. Argyropoulos
DOI:10.1021/jf071692e
日期:2007.10.1
The present paper demonstrates that both hardwoods and softwoods are readily soluble in various imidazolium-based ionic liquids (ILs) under gentle conditions. More specifically, a variety of ionic liquids can only partially dissolve wood chips, whereas ionic liquids such as 1-butyl-3-methylimida-zolium chloride and 1-allyl-3-methylimidazolium chloride have good solvating power for Norway spruce sawdust and Norway spruce and Southern pine thermomechanical pulp (TMP) fibers. Despite the fact that the obtained solutions were not fully clear, these ionic liquids provided solutions which permitted the complete acetylation of the wood. Alternatively, transparent amber solutions of wood could be obtained when the dissolution of the same lignocellulosic samples was attempted in 1-benzyl-3-methylimidazolium chloride. This realization was based on a designed augmented interaction of the aromatic character of the cation of the ionic liquid with the lignin in the wood. After dissolution, wood can be regenerated as an amorphous mixture of its original components. The cellulose of the regenerated wood can be efficiently digested to glucose by a cellulase enzymatic hydrolysis treatment. Furthermore, completely acetylated wood was found to be readily soluble in chloroform, allowing, for the first time, detailed proton nuclear magnetic resonance (NMR) spectra and NMR diffusion measurements to be made. It was thus demonstrated that the dissolution of wood in ionic liquids now offers a variety of new possibilities for its structural and macromolecular characterization, without the prior isolation of its individual components. Furthermore, considering the relatively wide solubility and compatibility of ionic liquids with many organic or inorganic functional chemicals or polymers, it is envisaged that this research could create a variety of new strategies for converting abundant woody biomass to valuable biofuels, chemicals, and novel functional composite biomaterials.
PROCESSES FOR PRODUCING SILK DOPE
申请人:Commonwealth Scientific and Industrial
Research Organisation
公开号:EP2475677A1
公开(公告)日:2012-07-18
PRODUCT PREPARATION AND RECOVERY FROM THERMOLYSIS OF LIGNOCELLULOSICS IN IONIC LIQUIDS
申请人:Argyropoulos Dimitris
公开号:US20080185112A1
公开(公告)日:2008-08-07
The present invention provides methods for the thermolysis of lignocellulosic materials, such as wood, cellulose, lignin, and lignocellulose. In specific embodiments, the methods comprise combining the lignocellulosic material with an ionic liquid and subjecting the mixture of the lignocellulosic material and the ionic media to pyrolytic conditions to form a recoverable product, such as a commodity chemical.
POLYMER DERIVATIVES AND COMPOSITES FROM THE DISSOLUTION OF LIGNOCELLULOSICS IN IONIC LIQUIDS
申请人:Argyropoulos Dimitris
公开号:US20080188636A1
公开(公告)日:2008-08-07
The present invention provides wood derivatives and composite materials prepared by first solvating a lignocellulosic material using an ionic liquid. The solvated lignocellulosic material can be derivatized to incorporate functional groups, particularly groups that facilitate later combination with polymer materials, including non-polymer polymers. The polymeric materials can be combined with the derivatized lignocellulosic material in solution, or the derivatized lignocellulosic material can be isolated and later combined with the polymeric material in a melt. The invention encompasses a variety of wood derivatives, composites, and nanocomposites useful for preparing multiple types of products, including membranes, fibers, and formed parts.