摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

2,4-diamino-5-[3,5-diethyl-4-(β-hydroxyethoxy)benzyl]pyrimidine | 105639-91-6

中文名称
——
中文别名
——
英文名称
2,4-diamino-5-[3,5-diethyl-4-(β-hydroxyethoxy)benzyl]pyrimidine
英文别名
2-[4-[(2,4-Diaminopyrimidin-5-yl)methyl]-2,6-diethylphenoxy]ethanol
2,4-diamino-5-[3,5-diethyl-4-(β-hydroxyethoxy)benzyl]pyrimidine化学式
CAS
105639-91-6
化学式
C17H24N4O2
mdl
——
分子量
316.403
InChiKey
BYXCQNJHVKWSGB-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    1.8
  • 重原子数:
    23
  • 可旋转键数:
    7
  • 环数:
    2.0
  • sp3杂化的碳原子比例:
    0.41
  • 拓扑面积:
    107
  • 氢给体数:
    3
  • 氢受体数:
    6

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为产物:
    描述:
    2,4-Diamino-5-(3,5-diaethyl-4-hydroxybenzyl)-pyrimidin2-溴乙醇sodium methylate 作用下, 以 二甲基亚砜 为溶剂, 以24%的产率得到2,4-diamino-5-[3,5-diethyl-4-(β-hydroxyethoxy)benzyl]pyrimidine
    参考文献:
    名称:
    2,4-Diamino-5-benzylpyrimidines as antibacterial agents. 7. Analysis of the effect of 3,5-dialkyl substituent size and shape on binding to four different dihydrofolate reductase enzymes
    摘要:
    A group of trimethoprim (TMP) analogues containing 3,5-dialkyl(or halo)-4-alkoxy, -hydroxy, or -amino substitution were analyzed in terms of their inhibitory activities against four dihydrofolate reductase (DHFR) isozymes. Although selectivities were lower than with TMP, the activities against vertebrate DHFR were usually at least 2 orders of magnitude less than against enzymes from microbial sources. However, the profiles of activity were remarkably similar for rat, Neisseria gonorrhoeae, and Plasmodium berghei enzymes in all three series, although somewhat different for Escherichia coli DHFR, leading to the conclusion that the hydrophobic pockets are similar for the first three isozymes. Optimal substitution was reached with 3,5-di-n-propyl or 3-ethyl-5-n-propyl groups. Branching of chains at the alpha-carbon, which resulted in increased substituent thickness, was detrimental to E. coli DHFR inhibition in particular. MR is an inadequate parameter for use in correlating such substituent effects. Conformational changes of the more bulky inhibitors can be invoked to explain some differences in inhibitory pattern. Although log P explains simple substituent effects with the vertebrate DHFRs very well, it is insufficient in the more complex cases described here, where shape is clearly involved as well. Solvent-accessible surface areas were measured for TMP in E. coli and chicken DHFRs, where the coordinates are now known. The environment is more hydrophobic in the latter case; this can also be postulated for rat DHFR, which has a very similar activity profile. As with the mammalian isozymes, N. gonorrhoeae DHFR contains an active site phenylalanine replacing Leu-28 of E. coli DHFR, thus creating a more hydrophobic pocket. A similar replacement may also occur in the P.berghei isozyme. Selectivity for bacterial DHFR is dependent on the nature of the 4-substituent, being low for polar 4-hydroxy compounds but high for polar 4-amino analogues, possibly as a result of solvation differences. With complex substituents, the environment of each atom in the active site must be taken into account to adequately explain structure-activity relationships.
    DOI:
    10.1021/jm00385a017
点击查看最新优质反应信息

文献信息

  • ROTH B.; RAUCKMAN B. S.; FERONE R.; BACCANARI D. P.; CHAMPNESS J. N.; HYD+, J. MED. CHEM., 30,(1987) N 2, 348-356
    作者:ROTH B.、 RAUCKMAN B. S.、 FERONE R.、 BACCANARI D. P.、 CHAMPNESS J. N.、 HYD+
    DOI:——
    日期:——
  • 2,4-Diamino-5-benzylpyrimidines as antibacterial agents. 7. Analysis of the effect of 3,5-dialkyl substituent size and shape on binding to four different dihydrofolate reductase enzymes
    作者:Barbara Roth、Barbara S. Rauckman、Robert Ferone、David P. Baccanari、John N. Champness、Richard M. Hyde
    DOI:10.1021/jm00385a017
    日期:1987.2
    A group of trimethoprim (TMP) analogues containing 3,5-dialkyl(or halo)-4-alkoxy, -hydroxy, or -amino substitution were analyzed in terms of their inhibitory activities against four dihydrofolate reductase (DHFR) isozymes. Although selectivities were lower than with TMP, the activities against vertebrate DHFR were usually at least 2 orders of magnitude less than against enzymes from microbial sources. However, the profiles of activity were remarkably similar for rat, Neisseria gonorrhoeae, and Plasmodium berghei enzymes in all three series, although somewhat different for Escherichia coli DHFR, leading to the conclusion that the hydrophobic pockets are similar for the first three isozymes. Optimal substitution was reached with 3,5-di-n-propyl or 3-ethyl-5-n-propyl groups. Branching of chains at the alpha-carbon, which resulted in increased substituent thickness, was detrimental to E. coli DHFR inhibition in particular. MR is an inadequate parameter for use in correlating such substituent effects. Conformational changes of the more bulky inhibitors can be invoked to explain some differences in inhibitory pattern. Although log P explains simple substituent effects with the vertebrate DHFRs very well, it is insufficient in the more complex cases described here, where shape is clearly involved as well. Solvent-accessible surface areas were measured for TMP in E. coli and chicken DHFRs, where the coordinates are now known. The environment is more hydrophobic in the latter case; this can also be postulated for rat DHFR, which has a very similar activity profile. As with the mammalian isozymes, N. gonorrhoeae DHFR contains an active site phenylalanine replacing Leu-28 of E. coli DHFR, thus creating a more hydrophobic pocket. A similar replacement may also occur in the P.berghei isozyme. Selectivity for bacterial DHFR is dependent on the nature of the 4-substituent, being low for polar 4-hydroxy compounds but high for polar 4-amino analogues, possibly as a result of solvation differences. With complex substituents, the environment of each atom in the active site must be taken into account to adequately explain structure-activity relationships.
查看更多