AbstractWe synthesized substituted pyrazolylpyridine ligands to examine their donor properties by spectroscopic (IR, NMR) and computational (AM 1) methods. The influence of the substitution patterns on spectroscopic and thermodynamic features of molybdenum oxobisperoxo complexes [(L–L)MoO(O2)2] (L–L=2‐(1‐alkyl‐3‐pyrazolyl)pyridine/pyrazine) correlates with the activities of the complexes in catalytic olefin epoxidation reactions. This further proof for the relation between the Lewis acidity and the catalytic activity of epoxidation catalysts supports a reaction mechanism in which the peroxo complex activates the oxidizing agent (H2O2, ROOH) instead of directly transferring an oxygen atom from a π2‐peroxo ligand to the olefin.
relationships of pyridylpyrazole ligands and provide guidance for the design of new and more efficient ligands for the selective extraction of actinides over lanthanides, a series of alkyl-substituted pyridylpyrazole ligands with different branched chains at different positions of the pyrazole ring were synthesized. Extraction experiments showed that the pyridylpyrazole ligands exhibited good selective extraction
AbstractWe synthesized substituted pyrazolylpyridine ligands to examine their donor properties by spectroscopic (IR, NMR) and computational (AM 1) methods. The influence of the substitution patterns on spectroscopic and thermodynamic features of molybdenum oxobisperoxo complexes [(L–L)MoO(O2)2] (L–L=2‐(1‐alkyl‐3‐pyrazolyl)pyridine/pyrazine) correlates with the activities of the complexes in catalytic olefin epoxidation reactions. This further proof for the relation between the Lewis acidity and the catalytic activity of epoxidation catalysts supports a reaction mechanism in which the peroxo complex activates the oxidizing agent (H2O2, ROOH) instead of directly transferring an oxygen atom from a π2‐peroxo ligand to the olefin.