A nitrogen-containing bicyclic heterocyclic compound represented by the following formula (1) is provided. When the compound or a salt thereof is administered to a human being or an animal, the compound has a strong antagonistic action against EP1 receptors, and is useful, for example, as an active ingredient of a medicine for the prevention and/or treatment of overactive bladder. The compound is also useful as an active ingredient of a medicine for the prevention and/or treatment of symptoms such as frequency urinary, urinary urgency, or urinary incontinence.
Discovery of 2-(1H-indazol-1-yl)-thiazole derivatives as selective EP1 receptor antagonists for treatment of overactive bladder by core structure replacement
We have designed a series of potent EP1 receptor antagonists. These antagonists are a series of 2-(1H-indazol-1-yl)-thiazoles in which the corestructure was replaced with pyrazole-phenyl groups. In preliminary conscious rat cystometry experiments, two representative candidates, 2 and 22, increased bladder capacity. In particular, the increase using 22 was approximately 2-fold that of the baseline
A series of 5-substituted pyrimidine derivatives was synthesized, and their ability to inhibit brassinosteroid biosynthesis was tested. The biological activity of these compounds was evaluated by the cress stem elongation method. Among the synthesized compounds, α-(4-chlorophenyl)-α-phenyl-5-pyrimidinemethanol (DPPM 4) exhibited potent inhibitory activity for retarding cress stem elongation in the light. This inhibition was reversed by the application of 10 nM brassinolide, but not by 1 μM GA3. DPPM 4 also affected Arabidopsis growth in the dark. DPPM 4-treated Arabidopsis had phenotypes like those of brassinosteroid-deficient mutants, with short hypocotyls and open cotyledons, in the dark. These biological changes were restored by the co-application of 10 nM brassinolide, but not by 1 μM GA3, suggesting that the primary site of action of DPPM 4 was the brassinosteroid biosynthetic pathway.
A nitrogen-containing bicyclic heterocyclic compound represented by the following formula (1) is provided. When the compound or a salt thereof is administered to a human being or an animal, the compound has a strong antagonistic action against EP1 receptors, and is useful, for example, as an active ingredient of a medicine for the prevention and/or treatment of overactive bladder. The compound is also useful as an active ingredient of a medicine for the prevention and/or treatment of symptoms such as frequency urinary, urinary urgency, or urinary incontinence.