Isolation of Novel Radical Cations from Hydroquinone Ethers. Conformational Transition of the Methoxy Group upon Electron Transfer
摘要:
Hydroquinone ethers as the bis-annulated derivatives R1-R3 are excellent electron donors by virtue of the facile oxidation to their radical cations R1(.+), R2(.-), and R3(.-) that are readily isolable as unusually robust SbCl6- and BF4- salts persistent in air for prolonged periods. Although the gas-phase vertical ionization potentials of the methyl ethers R1a and R2a are the same (IP = 7.83 +/- 0.01 eV), the oxidation potential of R1a in dichloromethane solution is less positive than that of R2a (E(1/2) = 1.11 and 1.30 V, respectively). The significantly lower value of E(1/2) for R1a relative to R2a, despite minimal changes in structure, is attributed to the conformational change that can occur in the radical cation. Indeed, X-ray crystallographic analysis of R1a, R2a, and R1a(.-) shows that the increased donor strength of R1a is derived from the enhanced (resonance) stabilization of R1a(.-), in which the methoxy group undergoes a 90 degrees rotation to the favorable coplanar conformation with respect to the aromatic ring. The subtle variation in the molecular structures of R1 and R2 accounts for the difference in nonbonded steric effects arising from the bridgehead alpha-hydrogens toward the methoxy groups.
Acid Catalysis vs. Electron-Transfer Catalysis via Organic Cations or Cation-Radicals as the Reactive Intermediate. Are These Distinctive Mechanisms?
摘要:
Proton transfer to aromatic and olefinic donors (D) lends to the facile interchange of transient carbocations (DH+) and cation-radical (D+.). The same types of cation and cation-radical are reactive intermediates in the acid catalysis and the electron-transfer catalysis of such organic transformations as benzylic coupling, epoxide.-pinacol rearrangements and cis-trans isomerization of stilbenes when they are both carried out under otherwise identical reaction conditions, However, the rapid exchange of diamagnetic cations and paramagnetic cation-radicals blurs the traditional view of sepal ate electrophilic and homolytic processes, and rigorous experimental evidence is required to establish whether acid catalysis and electron-transfer catalysis actually represent distinct mechanistic categories.
Preparation and Structures of Crystalline Aromatic Cation-Radical Salts. Triethyloxonium Hexachloroantimonate as a Novel (One-Electron) Oxidant
作者:R. Rathore、A. S. Kumar、S. V. Lindeman、J. K. Kochi
DOI:10.1021/jo980407a
日期:1998.8.1
Triethyloxonium hexachloroantimonate [Et(3)O(+)SbCl(6)(-)] is a selective oxidant of aromatic donors (ArH), and it allows the facile preparation and isolation of crystalline paramagnetic salts [ArH(+)(*), SbCl(6)(-)] for the X-ray structure determination of various aromatic cation radicals. The mechanistic relationship between the Meerwein salt [Et(3)O(+)SbCl(6)(-)] and the pure Lewis acid oxidant
Electrolyte solutions for electrochromic devices such as rear view mirrors and displays with low leakage currents are prepared using inexpensive, low conductivity conductors. Preferred electrolytes include bifunctional redox dyes and molten salt solvents with enhanced stability toward ultraviolet radiation. The solvents include lithium or quaternary ammonium cations, and perfluorinated sulfonylimide anions selected from trifluoromethylsulfonate (CF
3
SO
3
−
), bis(trifluoromethylsulfonyl)imide ((CF
3
SO
2
)
2
N
−
), bis(perfluoroethylsulfonyl)imide ((CF
3
CF
2
SO
2
)
2
N
−
) and tris(trifluoromethylsulfonyl)methide ((CF
3
SO
2
)
3
C
−
). Electroluminescent, electrochromic and photoelectrochromic devices with nanostructured electrodes include ionic liquids with bifunctional redox dyes. Some of the electrolyte solutions color to red when devices employing the solutions are powered, leading to red or neutral electrooptic devices.
Electrolyte solutions for electrochromic devices such as rear view mirrors and displays with low leakage currents are prepared using inexpensive, low conductivity conductors. Preferred electrolytes include bifunctional redox dyes and molten salt solvents with enhanced stability toward ultraviolet radiation. The solvents include lithium or quaternary ammonium cations, and perfluorinated sulfonylimide anions selected from trifluoromethylsulfonate (CF
3
SO
3
−
), bis(trifluoromethylsulfonyl)imide ((CF
3
SO
2
)
2
N
−
), bis(perfluoroethylsulfonyl)imide ((CF
3
CF
2
SO
2
)
2
N
−
) and tris(trifluoromethylsulfonyl)methide ((CF
3
SO
2
)
3
C
−
). Electroluminescent, electrochromic and photoelectrochromic devices with nanostructured electrodes include ionic liquids with bifunctional redox dyes. Some of the electrolyte solutions color to red when devices employing the solutions are powered, leading to red or neutral electrooptic devices.