摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

5-nonanesulfonic acid methyl ester | 935458-41-6

中文名称
——
中文别名
——
英文名称
5-nonanesulfonic acid methyl ester
英文别名
Methyl nonane-5-sulfonate;methyl nonane-5-sulfonate
5-nonanesulfonic acid methyl ester化学式
CAS
935458-41-6
化学式
C10H22O3S
mdl
——
分子量
222.349
InChiKey
PYMNJCPNVHGJDW-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    3.3
  • 重原子数:
    14
  • 可旋转键数:
    8
  • 环数:
    0.0
  • sp3杂化的碳原子比例:
    1.0
  • 拓扑面积:
    51.8
  • 氢给体数:
    0
  • 氢受体数:
    3

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    参考文献:
    名称:
    Foldamers as Reactive Sieves:  Reactivity as a Probe of Conformational Flexibility
    摘要:
    A series of m-phenyleneethynylene (mPE) oligomers modified with a dimethylaminopyridine (DMAP) unit were treated with methyl sulfonates of varying sizes and shapes, and the relative reactivities were measured by UV spectrophotometry. Using a small-molecule DMAP analogue as a reference, each of the methyl sulfonates was shown to react at nearly identical rate. In great contrast, oligomers that are long enough to fold, and hence capable of binding the methyl sulfonate, experience rate enhancements of 18-1600-fold relative to that of the small-molecule analogue, depending on the type of alkyl chain attached to the guest. Three different oligomer lengths were studied, with the longest oligomers exhibiting the fastest rate and greatest substrate specificity. Even large, bulky guests show slightly enhanced methylation rates compared to that with the reference DMAP, which suggests a dynamic nature to the oligomer's binding cavity. Several mechanistic models to describe this behavior are discussed.
    DOI:
    10.1021/ja067670a
  • 作为产物:
    描述:
    5-壬酮过氧乙酸正丁基锂对甲苯磺酸溶剂黄146 作用下, 以 乙醚 为溶剂, 反应 3.5h, 生成 5-nonanesulfonic acid methyl ester
    参考文献:
    名称:
    Foldamers as Reactive Sieves:  Reactivity as a Probe of Conformational Flexibility
    摘要:
    A series of m-phenyleneethynylene (mPE) oligomers modified with a dimethylaminopyridine (DMAP) unit were treated with methyl sulfonates of varying sizes and shapes, and the relative reactivities were measured by UV spectrophotometry. Using a small-molecule DMAP analogue as a reference, each of the methyl sulfonates was shown to react at nearly identical rate. In great contrast, oligomers that are long enough to fold, and hence capable of binding the methyl sulfonate, experience rate enhancements of 18-1600-fold relative to that of the small-molecule analogue, depending on the type of alkyl chain attached to the guest. Three different oligomer lengths were studied, with the longest oligomers exhibiting the fastest rate and greatest substrate specificity. Even large, bulky guests show slightly enhanced methylation rates compared to that with the reference DMAP, which suggests a dynamic nature to the oligomer's binding cavity. Several mechanistic models to describe this behavior are discussed.
    DOI:
    10.1021/ja067670a
点击查看最新优质反应信息

文献信息

  • Foldamers as Reactive Sieves:  Reactivity as a Probe of Conformational Flexibility
    作者:Ronald A. Smaldone、Jeffrey S. Moore
    DOI:10.1021/ja067670a
    日期:2007.5.1
    A series of m-phenyleneethynylene (mPE) oligomers modified with a dimethylaminopyridine (DMAP) unit were treated with methyl sulfonates of varying sizes and shapes, and the relative reactivities were measured by UV spectrophotometry. Using a small-molecule DMAP analogue as a reference, each of the methyl sulfonates was shown to react at nearly identical rate. In great contrast, oligomers that are long enough to fold, and hence capable of binding the methyl sulfonate, experience rate enhancements of 18-1600-fold relative to that of the small-molecule analogue, depending on the type of alkyl chain attached to the guest. Three different oligomer lengths were studied, with the longest oligomers exhibiting the fastest rate and greatest substrate specificity. Even large, bulky guests show slightly enhanced methylation rates compared to that with the reference DMAP, which suggests a dynamic nature to the oligomer's binding cavity. Several mechanistic models to describe this behavior are discussed.
查看更多