With the goal of improving metabolic stability and further enhancing FBPase inhibitory activity, a series of tricyclic 8H-indeno[1,2-d][1,3]thiazoles was designed and synthesized with the aid of structure-based drug design. Extensive SAR studies led to the discovery of 19a with an IC50 value of 1 nM against human FBPase. X-ray crystallographic studies revealed that high affinity of 19a was due to the hydrophobic interaction arising from better shape complementarity and to the hydrogen bonding network involving the side chain on the tricyclic scaffold. (c) 2010 Elsevier Ltd. All rights reserved.
Discovery of potent and orally active tricyclic-based FBPase inhibitors
With the aim of exploring the effect of tricyclic-based FBPase inhibitors in cells and in vivo, a series of prodrugs of tricyclic phosphonates was designed and synthesized. Introducing prodrug moieties into tricyclic-based phosphonates led to the discovery of prodrug 15c, which strongly inhibited glucose production in monkey hepatocytes. Furthermore, prodrug 15c lowered blood glucose levels in fasted cynomolgus monkeys. (C) 2010 Elsevier Ltd. All rights reserved.
A prodrug approach towards the development of tricyclic-based FBPase inhibitors
For the purpose of reducing the strong CYP3A4 inhibitory potency of diamide prodrug 4, cyclic prodrugs of tricyclic-based FBPase inhibitors were synthesized. Extensive SAR studies led to the discovery of pyridine-containing cyclic prodrug 20, which strongly inhibited glucose production in monkey hepatocytes and also showed weak CYP3A4 inhibitory potency. (C) 2010 Elsevier Ltd. All rights reserved.
Complex Carbocyclic Skeletons from Aryl Ketones through a Three‐Photon Cascade Reaction
Starting from readily available 7-substituted 1-indanones, products with a tetracyclo[5.3.1.01,7 04,11 ]undec-2-ene skeleton were obtained upon irradiation at λ=350 nm (eight examples, 49-67 % yield). The assembly of the structurally complex carbon framework proceeds in a three-photon process comprising an ortho photocycloaddition, a disrotatory [4π] photocyclization, and a di-π-methane rearrangement