adopt structures that are highly twisted from planar conformations. Their orientations were tuned by the steric and/or electronic interactions of the substituents at their 2-, 4-, and 5-positions. The 5-aminothiazoles exhibited a range of fluorescent emissions, from blue to orange. Although the absorption spectra were independent of the polarity of the solvent, fluorescent emissions were influenced
Chemical or electrochemical one‐electron oxidation of 5‐N‐arylaminothiazoles was found to afford stable radical cations. For chemicaloxidation, 1 equivalent of [(4‐BrC6H4)3N][SbCl6] (Magic Blue, MB) was added to CH2Cl2 solutions of the thiazoles, and the thus‐obtained radicals showed light absorption in the near‐infrared region. Electrochemical oxidation also led to bathochromic shifts in the absorption