Development of Serine Protease Inhibitors Displaying a Multicentered Short (<2.3 Å) Hydrogen Bond Binding Mode: Inhibitors of Urokinase-Type Plasminogen Activator and Factor Xa
作者:Erik Verner、Bradley A. Katz、Jeffrey R. Spencer、Darin Allen、Jason Hataye、Witold Hruzewicz、Hon C. Hui、Aleksandr Kolesnikov、Yong Li、Christine Luong、Arnold Martelli、Kesavan Radika、Roopa Rai、Miles She、William Shrader、Paul A. Sprengeler、Sean Trapp、Jing Wang、Wendy B. Young、Richard L. Mackman
DOI:10.1021/jm0100638
日期:2001.8.1
Novel scaffolds that bind to serine proteases through a unique network of short hydrogen bonds to the catalytic Ser195 have been developed. The resulting potent serine protease inhibitors were designed from lead molecule 2-(2-hydroxyphenyl)1H-benzoimidazole-5-carboxamidine, 6b, which is known to display several modes of binding. For instance, 6b can recruit zinc and bind in a manner similar to that reported by bis(5-amidino-2-benzimidazolyl)methane (BABIM) (Nature 1998, 391, 608-612).(1) Alternatively, 6b can bind in the absence of zinc through a multicentered network of short (<2.3 Angstrom) hydrogen bonds. The lead structure was optimized in the zinc-independent binding mode toward a panel of six human serine proteases to yield optimized inhibitors such as 2-(3-bromo-2-hydroxy-5-methylphenyl)-1H-indole-5-carboxamidine, 22a, and 2-(2-hydroxybiphenyl-3-yl)-1H-indole-5-carboxamidine, 22f. Structure-activity relationships determined that, apart from the amidine function, an indole or benzimidazole and an ortho substituted phenol group were also essential components for optimal potency. The affinities (K-i) of 22a and 22f, for example, bearing these groups ranged from 8 to 600 nM toward a panel of six human serine proteases. High-resolution crystal structures revealed that the binding mode of these molecules in several of the enzymes was identical to that of 6b and involved short (<2.3 Angstrom) hydrogen bonds among the inhibitor hydroxyl oxygen, Ser195, and a water molecule trapped in the oxyanion hole. In summation, novel and potent trypsin-like serine protease inhibitors possessing a unique mode of binding have been discovered.