Studies Leading to Potent, Dual Inhibitors of Bcl-2 and Bcl-xL
摘要:
Overexpression of the antiapototic proteins Bcl-2 and Bcl-xL provides a common mechanism through which cancer cells gain a survival advantage and become resistant to conventional chemotherapy. Inhibition of these prosurvival proteins is an attractive strategy for cancer therapy. We recently described the discovery of a selective Bcl-xL antagonist that potentiates the antitumor activity of chemotherapy and radiation. Here we describe the use of structure-guided design to exploit a deep hydrophobic binding pocket on the surface of these proteins to develop the first dual, subnanomolar inhibitors of Bcl-xL and Bcl-2. This study culminated in the identification of 2, which exhibited EC50 values of 8 nM and 30 nM in Bcl-2 and Bcl-xL dependent cells, respectively. Compound 2 demonstrated single agent efficacy against human follicular lymphoma cell lines that overexpress Bcl-2, and efficacy in a murine xenograft model of lymphoma when given both as a single agent and in combination with etoposide.
Studies Leading to Potent, Dual Inhibitors of Bcl-2 and Bcl-xL
摘要:
Overexpression of the antiapototic proteins Bcl-2 and Bcl-xL provides a common mechanism through which cancer cells gain a survival advantage and become resistant to conventional chemotherapy. Inhibition of these prosurvival proteins is an attractive strategy for cancer therapy. We recently described the discovery of a selective Bcl-xL antagonist that potentiates the antitumor activity of chemotherapy and radiation. Here we describe the use of structure-guided design to exploit a deep hydrophobic binding pocket on the surface of these proteins to develop the first dual, subnanomolar inhibitors of Bcl-xL and Bcl-2. This study culminated in the identification of 2, which exhibited EC50 values of 8 nM and 30 nM in Bcl-2 and Bcl-xL dependent cells, respectively. Compound 2 demonstrated single agent efficacy against human follicular lymphoma cell lines that overexpress Bcl-2, and efficacy in a murine xenograft model of lymphoma when given both as a single agent and in combination with etoposide.
N-Benzoyl arylsulfonamides having the formula
1
are BCL-Xl inhibitors and are useful for promoting apoptosis. Also disclosed are BCL-Xl inhibiting compositions and methods of promoting apoptosis in a mammal.
N-Benzoyl arylsulfonamides having the formula
1
Are BCL-X1 inhibitors and are useful for promoting apoptosis. Also disclosed are BCL-X1 inhibiting compositions and methods of promoting apoptosis in a mammal.
N-Benzoyl arylsulfonamides having the formula
are BCL-Xl inhibitors and are useful for promoting apoptosis. Also disclosed are BCL-Xl inhibiting compositions and methods of promoting apoptosis in a mammal.
Disclosed are compounds which inhibit the activity of anti-apoptotic protein family members, compositions containing the compounds and uses of the compounds for preparing medicaments for treating diseases during which occurs expression one or more than one of an anti-apoptotic protein family member.
Disclosed are compounds which inhibit the activity of anti-apoptotic protein family members, compositions containing the compounds and uses of the compounds for preparing medicaments for treating diseases during which occurs expression one or more than one of an anti-apoptotic protein family member.