摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

3,3,5-三甲基环己基2-氧亚基-2-苯基醋酸盐 | 16623-22-6

中文名称
3,3,5-三甲基环己基2-氧亚基-2-苯基醋酸盐
中文别名
——
英文名称
3,3,5-trimethylcyclohexyl 2-oxo-2-phenylacetate
英文别名
(3,3,5-trimethylcyclohexyl) 2-oxo-2-phenylacetate
3,3,5-三甲基环己基2-氧亚基-2-苯基醋酸盐化学式
CAS
16623-22-6
化学式
C17H22O3
mdl
——
分子量
274.36
InChiKey
XTWPDGJQEPUEIH-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    4.7
  • 重原子数:
    20
  • 可旋转键数:
    4
  • 环数:
    2.0
  • sp3杂化的碳原子比例:
    0.53
  • 拓扑面积:
    43.4
  • 氢给体数:
    0
  • 氢受体数:
    3

SDS

SDS:d1432b5151a7aa4a705395abb0115803
查看

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量
  • 下游产品
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    描述:
    3,3,5-三甲基环己基2-氧亚基-2-苯基醋酸盐sodium acetate双二苯基膦甲烷 、 cobalt(II) iodide 、 作用下, 以 乙腈 为溶剂, 反应 12.0h, 以91%的产率得到环扁桃酯
    参考文献:
    名称:
    以H2O为氢源的α-酮酸酯和N-环硫磺酰亚胺的钴催化转移加氢
    摘要:
    描述了一种以安全和环境友好的H 2 O作为氢源对各种α-酮酸酯和N-环磺酰亚胺的共催化有效转移加氢方法。该反应使用容易获得并且易于处理锌金属作为还原剂。有趣的是,催化体系不需要用于还原N-环磺酰亚胺的配体。
    DOI:
    10.1002/adsc.201900636
  • 作为产物:
    描述:
    环扁桃酯戴斯-马丁氧化剂 作用下, 以 二氯甲烷 为溶剂, 反应 2.0h, 以86%的产率得到3,3,5-三甲基环己基2-氧亚基-2-苯基醋酸盐
    参考文献:
    名称:
    Enrichment of Relevant Oxidative Degradation Products in Pharmaceuticals With Targeted Chemoselective Oxidation
    摘要:
    The ability to produce and isolate relatively pure amounts of relevant degradation products is key to several aspects of drug product development: (a) aid in the unambiguous structural identification of such degradation products, fulfilling regulatory requirements to develop safe formulations (International Conference on Harmonization Q3B and M7); (b) pursue as appropriate safety evaluations with such material, such as chronic toxicology or Ames testing; (c) for a specified degradation product in a late-stage regulatory filing, use pure and well-characterized material as the analytical standard. Producing such materials is often a resource-and time-intensive activity, either relying on the isolation of slowly formed degradation products from stressed drug product or by re-purposing the drug substance synthetic route. This problem is exacerbated if the material of interest is an oxidative degradation product, because typical oxidative stressing (H2O2 and radical initiators) tends to produce a myriad of irrelevant species beyond a certain stress threshold, greatly complicating attempts for isolating the relevant degradation product. In this article, we present reagents and methods that may allow the rapid and selective enrichment of active pharmaceutical ingredient with the desired oxidative degradation product, which can then be isolated and used for purposes described above. (c) 2019 American Pharmacists Association (R). Published by Elsevier Inc. All rights reserved.
    DOI:
    10.1016/j.xphs.2018.10.059
点击查看最新优质反应信息

文献信息

  • Electrochemical two-electron oxygen reduction reaction (ORR) induced aerobic oxidation of α-diazoesters
    作者:Mengyao Ruan、Liang Chen、Ziyang Wen、Fan Yang、Chao Ma、Cuifen Lu、Guichun Yang、Meng Gao
    DOI:10.1039/d1cc06945d
    日期:——
    Electrochemical oxygen reduction reaction (ORR) is a powerful tool for introducing oxygen functional groups in synthetic chemistry. However, compared with the well-developed one-electron oxygen reduction process, the applications of two-electron oxygen reduction in electrochemical synthesis have been seldom studied. We present herein our recent progress in the oxidation of α-diazoesters to α-ketoesters
    电化学氧还原反应 (ORR) 是在合成化学中引入氧官能团的有力工具。然而,与成熟的单电子氧还原工艺相比,双电子氧还原在电化学合成中的应用研究较少。我们在此介绍了我们在通过双电子氧还原方法原位产生的过氧化氢将 α-重氮酯氧化为 α-酮酯方面的最新进展。在无外源氧化剂和无金属催化剂的电化学条件下,以中等至高产率获得了多种有价值的 α-酮酯产物。
  • Rongalite-Mediated Transition Metal- and Hydride-Free Chemoselective Reduction of α-Keto Esters and α-Keto Amides
    作者:Sivaparwathi Golla、Hari Prasad Kokatla
    DOI:10.1021/acs.joc.2c00936
    日期:2022.8.5
    metal- and hydride-free protocol has been developed for the chemoselective reduction of α-keto esters and α-keto amides using rongalite as a reducing agent. Here, rongalite acts as a hydride-free reducing agent via a radical mechanism. This protocol offers the synthesis of a wide range of α-hydroxy esters and α-hydroxy amides with 85–98% yields. This chemoselective method is compatible with other reducible
    已经开发了一种无过渡金属和无氢化物的方案,用于使用雕白粉作为还原剂对 α-酮酯和 α-酮酰胺进行化学选择性还原。在这里,雕白粉通过自由基机制充当无氢化物的还原剂。该协议提供了多种 α-羟基酯和 α-羟基酰胺的合成,产率为 85-98%。这种化学选择性方法与其他可还原的官能团兼容,例如卤化物、烯烃、酰胺和腈。使用廉价的雕白粉(约0.03 美元/1 g)、温和的反应条件和克级合成是该方法的一些关键特征。此外,已以 79% 的产率合成了克级规模的血管扩张药物 cyclandelate。
  • FUNCKE; REKKER; ERNSTING, Arzneimittel-Forschung/Drug Research, 1956, vol. 6, # 2, p. 60 - 61
    作者:FUNCKE、REKKER、ERNSTING、NAUTA
    DOI:——
    日期:——
  • Cobalt‐Catalyzed Transfer Hydrogenation of α‐Ketoesters and <i>N</i> ‐Cyclicsulfonylimides Using H <sub>2</sub> O as Hydrogen Source
    作者:Yang Gao、Xuexin Zhang、Ronibala Devi Laishram、Jingchao Chen、Kangkui Li、Keyang Zhang、Guangzhi Zeng、Baomin Fan
    DOI:10.1002/adsc.201900636
    日期:2019.9.3
    A Co‐catalyzed effective transfer hydrogenation of various αketoesters and Ncyclicsulfonylimides by safe and environmentally benign H2O as hydrogen source is described. The reaction used easily available and easy to handle zinc metal as a reductant. Interestingly, the catalytic system does not require ligand for reduction of Ncyclicsulfonylimides.
    描述了一种以安全和环境友好的H 2 O作为氢源对各种α-酮酸酯和N-环磺酰亚胺的共催化有效转移加氢方法。该反应使用容易获得并且易于处理锌金属作为还原剂。有趣的是,催化体系不需要用于还原N-环磺酰亚胺的配体。
  • Enrichment of Relevant Oxidative Degradation Products in Pharmaceuticals With Targeted Chemoselective Oxidation
    作者:Kausik K. Nanda、Olivier Mozziconacci、James Small、Leonardo R. Allain、Roy Helmy、W. Peter Wuelfing
    DOI:10.1016/j.xphs.2018.10.059
    日期:2019.4
    The ability to produce and isolate relatively pure amounts of relevant degradation products is key to several aspects of drug product development: (a) aid in the unambiguous structural identification of such degradation products, fulfilling regulatory requirements to develop safe formulations (International Conference on Harmonization Q3B and M7); (b) pursue as appropriate safety evaluations with such material, such as chronic toxicology or Ames testing; (c) for a specified degradation product in a late-stage regulatory filing, use pure and well-characterized material as the analytical standard. Producing such materials is often a resource-and time-intensive activity, either relying on the isolation of slowly formed degradation products from stressed drug product or by re-purposing the drug substance synthetic route. This problem is exacerbated if the material of interest is an oxidative degradation product, because typical oxidative stressing (H2O2 and radical initiators) tends to produce a myriad of irrelevant species beyond a certain stress threshold, greatly complicating attempts for isolating the relevant degradation product. In this article, we present reagents and methods that may allow the rapid and selective enrichment of active pharmaceutical ingredient with the desired oxidative degradation product, which can then be isolated and used for purposes described above. (c) 2019 American Pharmacists Association (R). Published by Elsevier Inc. All rights reserved.
查看更多

同类化合物

(βS)-β-氨基-4-(4-羟基苯氧基)-3,5-二碘苯甲丙醇 (S)-(-)-7'-〔4(S)-(苄基)恶唑-2-基]-7-二(3,5-二-叔丁基苯基)膦基-2,2',3,3'-四氢-1,1-螺二氢茚 (S)-盐酸沙丁胺醇 (S)-3-(叔丁基)-4-(2,6-二甲氧基苯基)-2,3-二氢苯并[d][1,3]氧磷杂环戊二烯 (S)-2,2'-双[双(3,5-三氟甲基苯基)膦基]-4,4',6,6'-四甲氧基联苯 (S)-1-[3,5-双(三氟甲基)苯基]-3-[1-(二甲基氨基)-3-甲基丁烷-2-基]硫脲 (R)富马酸托特罗定 (R)-(-)-盐酸尼古地平 (R)-(+)-7-双(3,5-二叔丁基苯基)膦基7''-[((6-甲基吡啶-2-基甲基)氨基]-2,2'',3,3''-四氢-1,1''-螺双茚满 (R)-3-(叔丁基)-4-(2,6-二苯氧基苯基)-2,3-二氢苯并[d][1,3]氧杂磷杂环戊烯 (R)-2-[((二苯基膦基)甲基]吡咯烷 (N-(4-甲氧基苯基)-N-甲基-3-(1-哌啶基)丙-2-烯酰胺) (5-溴-2-羟基苯基)-4-氯苯甲酮 (5-溴-2-氯苯基)(4-羟基苯基)甲酮 (5-氧代-3-苯基-2,5-二氢-1,2,3,4-oxatriazol-3-鎓) (4S,5R)-4-甲基-5-苯基-1,2,3-氧代噻唑烷-2,2-二氧化物-3-羧酸叔丁酯 (4-溴苯基)-[2-氟-4-[6-[甲基(丙-2-烯基)氨基]己氧基]苯基]甲酮 (4-丁氧基苯甲基)三苯基溴化磷 (3aR,8aR)-(-)-4,4,8,8-四(3,5-二甲基苯基)四氢-2,2-二甲基-6-苯基-1,3-二氧戊环[4,5-e]二恶唑磷 (2Z)-3-[[(4-氯苯基)氨基]-2-氰基丙烯酸乙酯 (2S,3S,5S)-5-(叔丁氧基甲酰氨基)-2-(N-5-噻唑基-甲氧羰基)氨基-1,6-二苯基-3-羟基己烷 (2S,2''S,3S,3''S)-3,3''-二叔丁基-4,4''-双(2,6-二甲氧基苯基)-2,2'',3,3''-四氢-2,2''-联苯并[d][1,3]氧杂磷杂戊环 (2S)-(-)-2-{[[[[3,5-双(氟代甲基)苯基]氨基]硫代甲基]氨基}-N-(二苯基甲基)-N,3,3-三甲基丁酰胺 (2S)-2-[[[[[[((1R,2R)-2-氨基环己基]氨基]硫代甲基]氨基]-N-(二苯甲基)-N,3,3-三甲基丁酰胺 (2-硝基苯基)磷酸三酰胺 (2,6-二氯苯基)乙酰氯 (2,3-二甲氧基-5-甲基苯基)硼酸 (1S,2S,3S,5S)-5-叠氮基-3-(苯基甲氧基)-2-[(苯基甲氧基)甲基]环戊醇 (1-(4-氟苯基)环丙基)甲胺盐酸盐 (1-(3-溴苯基)环丁基)甲胺盐酸盐 (1-(2-氯苯基)环丁基)甲胺盐酸盐 (1-(2-氟苯基)环丙基)甲胺盐酸盐 (-)-去甲基西布曲明 龙胆酸钠 龙胆酸叔丁酯 龙胆酸 龙胆紫 龙胆紫 齐达帕胺 齐诺康唑 齐洛呋胺 齐墩果-12-烯[2,3-c][1,2,5]恶二唑-28-酸苯甲酯 齐培丙醇 齐咪苯 齐仑太尔 黑染料 黄酮,5-氨基-6-羟基-(5CI) 黄酮,6-氨基-3-羟基-(6CI) 黄蜡,合成物 黄草灵钾盐