摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

NSC 375974 | 87967-98-4

中文名称
——
中文别名
——
英文名称
NSC 375974
英文别名
1,4-dihydro-2,6-dimethyl-4-(5'-methyl-3'-phenylisoxazol-4'-yl)-3,5-pyridinedicarboxylic acid diethyl ester;2,6-dimethyl-4-(5-methyl-3-phenylisoxazol-4-yl)-1,4-dihydropyridine-3,5-dicarboxylic acid diethyl ester;diethyl 2,6-dimethyl-4-(5-methyl-3-phenylisoxazol-4-yl)-1,4-dihydropyridine-3,5-dicarboxylate;Diethyl 2,6-dimethyl-4-(5-methyl-3-phenyl-1,2-oxazol-4-yl)-1,4-dihydropyridine-3,5-dicarboxylate
NSC 375974化学式
CAS
87967-98-4
化学式
C23H26N2O5
mdl
——
分子量
410.47
InChiKey
IOQVTCYDCVHJGZ-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    3.8
  • 重原子数:
    30
  • 可旋转键数:
    8
  • 环数:
    3.0
  • sp3杂化的碳原子比例:
    0.35
  • 拓扑面积:
    90.7
  • 氢给体数:
    1
  • 氢受体数:
    7

上下游信息

  • 下游产品
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    描述:
    NSC 375974硫酸硝酸 作用下, 以 为溶剂, 反应 0.17h, 以98%的产率得到2,6-dimethyl-4-(5-methyl-3-phenylisoxazol-4-yl)-pyridine-3,5-dicarboxylic acid diethyl ester
    参考文献:
    名称:
    Dimeric isoxazolyl-1,4-dihydropyridines have enhanced binding at the multi-drug resistance transporter
    摘要:
    A series of dimeric isoxazolyl-1,4-dihydropyridines (IDHPs) were prepared by click chemistry and examined for their ability to bind the multi-drug resistance transporter (MDR-1), a member of the ATP-binding cassette superfamily (ABC). Eight compounds in the present study exhibited single digit micromolar binding to this efflux transporter. One monomeric IDHP m-Br-1c, possessed submicromolar binding of 510 nM at MDR-1. Three of the dimeric IDHPs possessed <1.5 mu M activity, and 4b and 4c were observed to have superior binding selectivity compared to their corresponding monomers verses the voltage gated calcium channel (VGCC). The dimer with the best combination of activity and selectivity for MDR-1 was analog 4c containing an m-Br phenyl moiety in the 3-position of the isoxazole, and a tether with five ethyleneoxy units, referred to herein as Isoxaquidar. Two important controls, mono-triazole 5 and pyridine 6, also were examined, indicating that the triazole - incorporated as part of the click assembly as a spacer - contributes to MDR-1 binding. Compounds were also assayed at the allosteric site of the mGluR5 receptor, as a GPCR 7TM control, indicating that the p-Br IDHPs 4d, 4e and 4f with tethers of from n = 2 to 5 ethylenedioxy units, had sub-micromolar affinities with 4d being the most efficacious at 193 nM at mGluR5. The results are interpreted using a docking study using a human ABC as our current working hypothesis, and suggest that the distinct SARs emerging for these three divergent classes of biomolecular targets may be tunable, and amenable to the development of further selectivity. (C) 2017 Elsevier Ltd. All rights reserved.
    DOI:
    10.1016/j.bmc.2017.04.008
  • 作为产物:
    描述:
    (5-甲基-3-苯基-4-异恶唑)甲醇ammonium hydroxide 、 magnesium sulfate 、 pyridinium chlorochromate 作用下, 以 甲醇二氯甲烷 为溶剂, 反应 2.0h, 生成 NSC 375974
    参考文献:
    名称:
    Dimeric isoxazolyl-1,4-dihydropyridines have enhanced binding at the multi-drug resistance transporter
    摘要:
    A series of dimeric isoxazolyl-1,4-dihydropyridines (IDHPs) were prepared by click chemistry and examined for their ability to bind the multi-drug resistance transporter (MDR-1), a member of the ATP-binding cassette superfamily (ABC). Eight compounds in the present study exhibited single digit micromolar binding to this efflux transporter. One monomeric IDHP m-Br-1c, possessed submicromolar binding of 510 nM at MDR-1. Three of the dimeric IDHPs possessed <1.5 mu M activity, and 4b and 4c were observed to have superior binding selectivity compared to their corresponding monomers verses the voltage gated calcium channel (VGCC). The dimer with the best combination of activity and selectivity for MDR-1 was analog 4c containing an m-Br phenyl moiety in the 3-position of the isoxazole, and a tether with five ethyleneoxy units, referred to herein as Isoxaquidar. Two important controls, mono-triazole 5 and pyridine 6, also were examined, indicating that the triazole - incorporated as part of the click assembly as a spacer - contributes to MDR-1 binding. Compounds were also assayed at the allosteric site of the mGluR5 receptor, as a GPCR 7TM control, indicating that the p-Br IDHPs 4d, 4e and 4f with tethers of from n = 2 to 5 ethylenedioxy units, had sub-micromolar affinities with 4d being the most efficacious at 193 nM at mGluR5. The results are interpreted using a docking study using a human ABC as our current working hypothesis, and suggest that the distinct SARs emerging for these three divergent classes of biomolecular targets may be tunable, and amenable to the development of further selectivity. (C) 2017 Elsevier Ltd. All rights reserved.
    DOI:
    10.1016/j.bmc.2017.04.008
点击查看最新优质反应信息

文献信息

  • Fluorescent probes of the isoxazole–dihydropyridine scaffold: MDR-1 binding and homology model
    作者:Monika I. Szabon-Watola、Sarah V. Ulatowski、Kathleen M. George、Christina D. Hayes、Scott A. Steiger、Nicholas R. Natale
    DOI:10.1016/j.bmcl.2013.11.068
    日期:2014.1
    Isoxazole-1,4-dihydropyridines (IDHPs) were tethered to fluorescent moieties using double activation via a lanthanide assisted Weinreb amidation. IDHP-fluorophore conjugate 3c exhibits the highest binding to date for IDHPs at the multidrug-resistance transporter (MDR-1), and IDHP-fluorophore conjugates 3c and 7 distribute selectively in SH-SY5Y cells. A homology model for IDHP binding at MDR-1 is presented which represents our current working hypothesis. (C) 2013 Elsevier Ltd. All rights reserved.
  • Natale, Nicholas R.; Quincy, David A., Synthetic Communications, 1983, vol. 13, # 10, p. 817 - 822
    作者:Natale, Nicholas R.、Quincy, David A.
    DOI:——
    日期:——
  • NATALE, N. R.;QUINCY, D. A., SYNTH. COMMUN., 1983, 13, N 10, 817-822
    作者:NATALE, N. R.、QUINCY, D. A.
    DOI:——
    日期:——
  • Dimeric isoxazolyl-1,4-dihydropyridines have enhanced binding at the multi-drug resistance transporter
    作者:Scott A. Steiger、Chun Li、Donald S. Backos、Philip Reigan、N.R. Natale
    DOI:10.1016/j.bmc.2017.04.008
    日期:2017.6
    A series of dimeric isoxazolyl-1,4-dihydropyridines (IDHPs) were prepared by click chemistry and examined for their ability to bind the multi-drug resistance transporter (MDR-1), a member of the ATP-binding cassette superfamily (ABC). Eight compounds in the present study exhibited single digit micromolar binding to this efflux transporter. One monomeric IDHP m-Br-1c, possessed submicromolar binding of 510 nM at MDR-1. Three of the dimeric IDHPs possessed <1.5 mu M activity, and 4b and 4c were observed to have superior binding selectivity compared to their corresponding monomers verses the voltage gated calcium channel (VGCC). The dimer with the best combination of activity and selectivity for MDR-1 was analog 4c containing an m-Br phenyl moiety in the 3-position of the isoxazole, and a tether with five ethyleneoxy units, referred to herein as Isoxaquidar. Two important controls, mono-triazole 5 and pyridine 6, also were examined, indicating that the triazole - incorporated as part of the click assembly as a spacer - contributes to MDR-1 binding. Compounds were also assayed at the allosteric site of the mGluR5 receptor, as a GPCR 7TM control, indicating that the p-Br IDHPs 4d, 4e and 4f with tethers of from n = 2 to 5 ethylenedioxy units, had sub-micromolar affinities with 4d being the most efficacious at 193 nM at mGluR5. The results are interpreted using a docking study using a human ABC as our current working hypothesis, and suggest that the distinct SARs emerging for these three divergent classes of biomolecular targets may be tunable, and amenable to the development of further selectivity. (C) 2017 Elsevier Ltd. All rights reserved.
查看更多

同类化合物

(S)-氨氯地平-d4 (R,S)-可替宁N-氧化物-甲基-d3 (R)-N'-亚硝基尼古丁 (5E)-5-[(2,5-二甲基-1-吡啶-3-基-吡咯-3-基)亚甲基]-2-亚磺酰基-1,3-噻唑烷-4-酮 (5-溴-3-吡啶基)[4-(1-吡咯烷基)-1-哌啶基]甲酮 (5-氨基-6-氰基-7-甲基[1,2]噻唑并[4,5-b]吡啶-3-甲酰胺) (2S)-2-[[[9-丙-2-基-6-[(4-吡啶-2-基苯基)甲基氨基]嘌呤-2-基]氨基]丁-1-醇 (2R,2''R)-(+)-[N,N''-双(2-吡啶基甲基)]-2,2''-联吡咯烷四盐酸盐 黄色素-37 麦斯明-D4 麦司明 麝香吡啶 鲁非罗尼 鲁卡他胺 高氯酸N-甲基甲基吡啶正离子 高氯酸,吡啶 高奎宁酸 马来酸溴苯那敏 马来酸左氨氯地平 顺式-双(异硫氰基)(2,2'-联吡啶基-4,4'-二羧基)(4,4'-二-壬基-2'-联吡啶基)钌(II) 顺式-二氯二(4-氯吡啶)铂 顺式-二(2,2'-联吡啶)二氯铬氯化物 顺式-1-(4-甲氧基苄基)-3-羟基-5-(3-吡啶)-2-吡咯烷酮 顺-双(2,2-二吡啶)二氯化钌(II) 水合物 顺-双(2,2'-二吡啶基)二氯化钌(II)二水合物 顺-二氯二(吡啶)铂(II) 顺-二(2,2'-联吡啶)二氯化钌(II)二水合物 非那吡啶 非洛地平杂质C 非洛地平 非戈替尼 非尼拉朵 非尼拉敏 阿雷地平 阿瑞洛莫 阿培利司N-6 阿伐曲波帕杂质40 间硝苯地平 间-硝苯地平 锇二(2,2'-联吡啶)氯化物 链黑霉素 链黑菌素 银杏酮盐酸盐 铬二烟酸盐 铝三烟酸盐 铜-缩氨基硫脲络合物 铜(2+)乙酸酯吡啶(1:2:1) 铁5-甲氧基-6-甲基-1-氧代-2-吡啶酮 钾4-氨基-3,6-二氯-2-吡啶羧酸酯 钯,二氯双(3-氯吡啶-κN)-,(SP-4-1)-