摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

3-[4-[4-[[2-(3,5-Dihydroxyphenyl)-4-oxoquinazolin-3-yl]methyl]triazol-1-yl]butyl]-2-(3-hydroxyphenyl)quinazolin-4-one | 1427579-43-8

中文名称
——
中文别名
——
英文名称
3-[4-[4-[[2-(3,5-Dihydroxyphenyl)-4-oxoquinazolin-3-yl]methyl]triazol-1-yl]butyl]-2-(3-hydroxyphenyl)quinazolin-4-one
英文别名
3-[4-[4-[[2-(3,5-dihydroxyphenyl)-4-oxoquinazolin-3-yl]methyl]triazol-1-yl]butyl]-2-(3-hydroxyphenyl)quinazolin-4-one
3-[4-[4-[[2-(3,5-Dihydroxyphenyl)-4-oxoquinazolin-3-yl]methyl]triazol-1-yl]butyl]-2-(3-hydroxyphenyl)quinazolin-4-one化学式
CAS
1427579-43-8
化学式
C35H29N7O5
mdl
——
分子量
627.659
InChiKey
VSJHPHJIYMKTIF-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    3.7
  • 重原子数:
    47
  • 可旋转键数:
    9
  • 环数:
    7.0
  • sp3杂化的碳原子比例:
    0.14
  • 拓扑面积:
    157
  • 氢给体数:
    3
  • 氢受体数:
    9

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    参考文献:
    名称:
    Discovery of Allosteric Modulators of Factor XIa by Targeting Hydrophobic Domains Adjacent to Its Heparin-Binding Site
    摘要:
    To discover promising sulfated allosteric modulators (SAMs) of glycosaminoglycan-binding proteins (GBPs), such as human factor XIa (FXIa), we screened a library of 26 synthetic, sulfated quinazolin-4(3H)-ones (QAOs) resulting in the identification of six molecules that reduced the V-max of substrate hydrolysis without influencing the K-M. Mutagenesis of residues of the heparin-binding site (HBS) of FXIa introduced a nearly 5-fold loss in inhibition potency supporting recognition of an allosteric site. Fluorescence studies showed a sigmoidal binding profile indicating highly cooperative binding. Competition with a positively charged, heparin-binding polymer did not fully nullify inhibition suggesting importance of hydrophobic forces to binding. This discovery suggests the operation of a dual-element recognition process, which relies on an initial Coulombic attraction of anionic SAMs to the cationic HBS of FXIa that forms a locked complex through tight interaction with an adjacent hydrophobic patch. The dual-element strategy may be widely applicable for discovering SAMs of other GBPs.
    DOI:
    10.1021/jm301757v
  • 作为产物:
    参考文献:
    名称:
    Discovery of Allosteric Modulators of Factor XIa by Targeting Hydrophobic Domains Adjacent to Its Heparin-Binding Site
    摘要:
    To discover promising sulfated allosteric modulators (SAMs) of glycosaminoglycan-binding proteins (GBPs), such as human factor XIa (FXIa), we screened a library of 26 synthetic, sulfated quinazolin-4(3H)-ones (QAOs) resulting in the identification of six molecules that reduced the V-max of substrate hydrolysis without influencing the K-M. Mutagenesis of residues of the heparin-binding site (HBS) of FXIa introduced a nearly 5-fold loss in inhibition potency supporting recognition of an allosteric site. Fluorescence studies showed a sigmoidal binding profile indicating highly cooperative binding. Competition with a positively charged, heparin-binding polymer did not fully nullify inhibition suggesting importance of hydrophobic forces to binding. This discovery suggests the operation of a dual-element recognition process, which relies on an initial Coulombic attraction of anionic SAMs to the cationic HBS of FXIa that forms a locked complex through tight interaction with an adjacent hydrophobic patch. The dual-element strategy may be widely applicable for discovering SAMs of other GBPs.
    DOI:
    10.1021/jm301757v
点击查看最新优质反应信息

文献信息

  • Discovery of Allosteric Modulators of Factor XIa by Targeting Hydrophobic Domains Adjacent to Its Heparin-Binding Site
    作者:Rajesh Karuturi、Rami A. Al-Horani、Shrenik C. Mehta、David Gailani、Umesh R. Desai
    DOI:10.1021/jm301757v
    日期:2013.3.28
    To discover promising sulfated allosteric modulators (SAMs) of glycosaminoglycan-binding proteins (GBPs), such as human factor XIa (FXIa), we screened a library of 26 synthetic, sulfated quinazolin-4(3H)-ones (QAOs) resulting in the identification of six molecules that reduced the V-max of substrate hydrolysis without influencing the K-M. Mutagenesis of residues of the heparin-binding site (HBS) of FXIa introduced a nearly 5-fold loss in inhibition potency supporting recognition of an allosteric site. Fluorescence studies showed a sigmoidal binding profile indicating highly cooperative binding. Competition with a positively charged, heparin-binding polymer did not fully nullify inhibition suggesting importance of hydrophobic forces to binding. This discovery suggests the operation of a dual-element recognition process, which relies on an initial Coulombic attraction of anionic SAMs to the cationic HBS of FXIa that forms a locked complex through tight interaction with an adjacent hydrophobic patch. The dual-element strategy may be widely applicable for discovering SAMs of other GBPs.
查看更多