Aza-acyclic Nucleoside Phosphonates Containing a Second Phosphonate Group As Inhibitors of the Human, Plasmodium falciparum and vivax 6-Oxopurine Phosphoribosyltransferases and Their Prodrugs As Antimalarial Agents
摘要:
Hypoxanthineguanine[xanthine] phosphoribosyltransferase (HG[X]PRT) is considered an important target for antimalarial chemotherapy as it is the only pathway for the synthesis of the purine nucleoside monophosphates required for DNA/RNA production. Thus, inhibition of this enzyme should result in cessation of replication. The aza-acyclic nucleoside phosphonates (aza-ANPs) are good inhibitors of Plasmodium falciparum HGXPRT (PfHGXPRT), with K-i values as low as 0.08 and 0.01 mu M for Plasmodium vivax HGPRT (PvHGPRT). Prodrugs of these aza-ANPs exhibit antimalarial activity against Pf lines with IC50 values (0.8-6.0 mu M) and have low cytotoxicity against human cells. Crystal structures of six of these compounds in complex with human HGPRT have been determined. These suggest that the different affinities of these aza-ANPs could be due to the flexibility of the loops surrounding the active site as well as the flexibility of the inhibitors, allowing them to adapt to fit into three binding pockets of the enzyme(s).
The invention relates to compounds which are useful as inhibitors of 6-oxopurine phosphoribosyltransferases such as hypoxanthine-guanine-(xanthine) phosphoribosyltransferase (HG(X)PRT).
[EN] 6-OXOPURINE PHOSPHORIBOSYLTRANSFERASE INHIBITORS<br/>[FR] INHIBITEURS DE 6-OXOPURINE PHOSPHORIBOSYLTRANSFÉRASE
申请人:UNIV QUEENSLAND
公开号:WO2013166545A3
公开(公告)日:2015-03-05
EP2847201B1
申请人:——
公开号:EP2847201B1
公开(公告)日:2017-08-16
US9200020B2
申请人:——
公开号:US9200020B2
公开(公告)日:2015-12-01
Synthesis of Novel <i>N</i>-Branched Acyclic Nucleoside Phosphonates As Potent and Selective Inhibitors of Human, Plasmodium falciparum and Plasmodium vivax 6-Oxopurine Phosphoribosyltransferases
作者:Dana Hocková、Dianne T. Keough、Zlatko Janeba、Tzu-Hsuan Wang、John de Jersey、Luke W. Guddat
DOI:10.1021/jm300662d
日期:2012.7.12
Hypoxanthine-guanine-(xanthine) phosphoribosyltransferase (HG(X)PRT) is crucial for the survival of malarial parasites Plasmodium falciparum (Pf) and Plasmodium vivax (Pv). Acyclic nucleoside phosphonates (ANPs) are inhibitors of HG(X)PRT and arrest the growth of Pf in cell culture. Here, a novel class of ANPs containing trisubstituted nitrogen (aza-ANPs) has been synthesized. These compounds have a wide range of K-i values and selectivity for human HGPRT, PfHGXPRT, and PvHGPRT. The most selective and potent inhibitor of PfHGXPRT is 9-N-(3-methoxy-3-oxopropyl)-N-(2-phosphonoethyl)-2-aminoethyl]hypoxanthine (K-i = 100 nM): no inhibition could be detected against the human enzyme. This compound exhibits the highest ever reported selectivity for PfHGXPRT compared to human HGPRT. For PvHGPRT, 9-[N-(2-carboxyethyl)-N-(2-phosphonoethyl)-2-aminoethyl]guanine has a Ki of SO nM, the best inhibitor discovered for this enzyme to date. Docking of these compounds into the known structures of human HGPRT in complex with ANP-based inhibitors suggests reasons for the variations in affinity, providing insights for the design of antimalarial drug candidates.