[GRAPHICS]Additions of terminal alkynes to electrophiles are important transformations in organic chemistry. Generally, activated terminal alkynes react with epoxides in an S(N)2 fashion to form homopropargylic alcohols. We have developed a new synthetic method to form propargylic alcohols from epoxides and terminal alkynes via 1,2-shifts. This method involves cationic zirconium acetylides as both the activator of epoxides and nucleophiles. line to the mild conditions to pre-activate alkynes with silver nitrate, this synthetic method is useful for both electron-rich and electron-deficient alkynes with other acid- and base-sensitive functional groups.
[GRAPHICS]Additions of terminal alkynes to electrophiles are important transformations in organic chemistry. Generally, activated terminal alkynes react with epoxides in an S(N)2 fashion to form homopropargylic alcohols. We have developed a new synthetic method to form propargylic alcohols from epoxides and terminal alkynes via 1,2-shifts. This method involves cationic zirconium acetylides as both the activator of epoxides and nucleophiles. line to the mild conditions to pre-activate alkynes with silver nitrate, this synthetic method is useful for both electron-rich and electron-deficient alkynes with other acid- and base-sensitive functional groups.