Development of Synthetic Aminopeptidase N/CD13 Inhibitors to Overcome Cancer Metastasis and Angiogenesis
摘要:
Cancer metastasis is a major barrier to its treatment and an important cause of patient death. Antimetastatic agents hold promise for patients with advanced metastatic tumors. Aminopeptidase N/CD13 (APN) is being pursued by many as an important target against cancer metastasis and angiogenesis, but there are few reports on the in vivo evaluation of synthetic APN inhibitors. Herein, a series of compounds targeting APN were synthesized and evaluated for their antimetastasis and antiangiogenesis potency both in vitro and in vivo. Excitingly, compounds 4m, 4t, and 4cc, with the most potent APN inhibitory activities, displayed significant antimetastasis and antiangiogenesis effects in vitro and in vivo, suggesting that those synthetic APN inhibitors have the potential to overcome cancer metastasis and angiogenesis.
Lipophilic Permeability Efficiency Reconciles the Opposing Roles of Lipophilicity in Membrane Permeability and Aqueous Solubility
作者:Matthew R. Naylor、Andrew M. Ly、Mason J. Handford、Daniel P. Ramos、Cameron R. Pye、Akihiro Furukawa、Victoria G. Klein、Ryan P. Noland、Quinn Edmondson、Alexandra C. Turmon、William M. Hewitt、Joshua Schwochert、Chad E. Townsend、Colin N. Kelly、Maria-Jesus Blanco、R. Scott Lokey
DOI:10.1021/acs.jmedchem.8b01259
日期:2018.12.27
As drug discovery moves increasingly toward previously "undruggable" targets such as protein-protein interactions, lead compounds are becoming larger and more lipophilic. Although increasing lipophilicity can improve membrane permeability, it can also incur serious liabilities, including poor water solubility, increased toxicity, and faster metabolic clearance. Here we introduce a new efficiency metric, especially relevant to "beyond rule of 5" molecules, that captures, in a simple, unitless value, these opposing effects of lipophilicity on molecular properties. Lipophilic permeability efficiency (LPE) is defined as log D-dec/w(7.4) - m(lipo)cLogP + b(scaffold), where log D-dec/w(7.4) is the experimental decadiene-water distribution coefficient (pH 7.4), cLogP is the calculated octanol-water partition coefficient, and m(lipo) and b(scaffold) are scaling factors to standardize LPE values across different cLogP metrics and scaffolds. Using a variety of peptidic and nonpeptidic macrocycle drugs, we show that LPE provides a functional assessment of the efficiency with which a compound achieves passive membrane permeability at a given lipophilicity.