摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

3-(4-羟基亚苄基)吲哚-2-酮 | 293302-14-4

中文名称
3-(4-羟基亚苄基)吲哚-2-酮
中文别名
——
英文名称
3-(4-hydroxybenzylidene)indolin-2-one
英文别名
3-[(4-hydroxyphenyl)methylidene]-1H-indol-2-one
3-(4-羟基亚苄基)吲哚-2-酮化学式
CAS
293302-14-4
化学式
C15H11NO2
mdl
——
分子量
237.258
InChiKey
PLAOAGFXNCEZMZ-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    2.5
  • 重原子数:
    18
  • 可旋转键数:
    1
  • 环数:
    3.0
  • sp3杂化的碳原子比例:
    0.0
  • 拓扑面积:
    49.3
  • 氢给体数:
    2
  • 氢受体数:
    2

SDS

SDS:d0cff8b95ec1f8421596c74a4d8cfd2b
查看

反应信息

  • 作为反应物:
    描述:
    3,4-二甲氧基苯甲酰氯3-(4-羟基亚苄基)吲哚-2-酮三乙胺 作用下, 以 二氯甲烷 为溶剂, 以42%的产率得到4-((2-oxoindolin-3-ylidene)methyl)phenyl 3,4-dimethoxybenzoate
    参考文献:
    名称:
    In silico designing of domain B selective gyrase inhibitors for effective treatment of resistant tuberculosis
    摘要:
    One of the major mechanisms followed by the therapeutic agents to target the causative organism of TB, Mycobacterium tuberculosis, involves disruption of its DNA replication cycle. The process of replication involves two steps, i.e., breakage and reunion of DNA at gyrase A (GyrA) domain and ATP hydrolysis at gyrase B (GyrB) domain, both occur simultaneously. Current therapy for multi-drug resistant TB (MDR-TB) involves FDA approved, fluoroquinolone-based antibiotics, which act by targeting replication process at GyrA domain. However, resistance against fluoroquinolones due to mutations in the GyrA domain has limited the use of this therapy and shifted the focus of research community on GyrB domain. Thus, in the present study novel chemotherapeutic agents for resistant TB were designed by exploring GyrB domain using in silico techniques. Pharmacophore model of GyrB domain was employed for screening an In-house database. Followed by cross-screening via a qualitative Hip-Hop pharmacophore model for GyrA to remove non-selective gyrase B inhibitors. Further molecular dynamics simulations and MM-GBSA calculations were performed to determine stability and binding affinity of the screened molecules. These analyses resulted in five putative oxindole based selective GyrB domain inhibitors, which were synthesized and evaluated for anti-tubercular activity against M. tuberculosis H(37)Rv strain. Two compounds exhibited significant anti-TB activity, whereas other three compounds were found to be outliers of the in silico study.
    DOI:
    10.1016/j.tube.2018.08.005
  • 作为产物:
    描述:
    2-吲哚酮对羟基苯甲醛哌啶 作用下, 以 乙醇 为溶剂, 生成 3-(4-羟基亚苄基)吲哚-2-酮
    参考文献:
    名称:
    In silico designing of domain B selective gyrase inhibitors for effective treatment of resistant tuberculosis
    摘要:
    One of the major mechanisms followed by the therapeutic agents to target the causative organism of TB, Mycobacterium tuberculosis, involves disruption of its DNA replication cycle. The process of replication involves two steps, i.e., breakage and reunion of DNA at gyrase A (GyrA) domain and ATP hydrolysis at gyrase B (GyrB) domain, both occur simultaneously. Current therapy for multi-drug resistant TB (MDR-TB) involves FDA approved, fluoroquinolone-based antibiotics, which act by targeting replication process at GyrA domain. However, resistance against fluoroquinolones due to mutations in the GyrA domain has limited the use of this therapy and shifted the focus of research community on GyrB domain. Thus, in the present study novel chemotherapeutic agents for resistant TB were designed by exploring GyrB domain using in silico techniques. Pharmacophore model of GyrB domain was employed for screening an In-house database. Followed by cross-screening via a qualitative Hip-Hop pharmacophore model for GyrA to remove non-selective gyrase B inhibitors. Further molecular dynamics simulations and MM-GBSA calculations were performed to determine stability and binding affinity of the screened molecules. These analyses resulted in five putative oxindole based selective GyrB domain inhibitors, which were synthesized and evaluated for anti-tubercular activity against M. tuberculosis H(37)Rv strain. Two compounds exhibited significant anti-TB activity, whereas other three compounds were found to be outliers of the in silico study.
    DOI:
    10.1016/j.tube.2018.08.005
点击查看最新优质反应信息

同类化合物

(Z)-3-[[[2,4-二甲基-3-(乙氧羰基)吡咯-5-基]亚甲基]吲哚-2--2- (S)-(-)-5'-苄氧基苯基卡维地洛 (R)-(+)-5'-苄氧基卡维地洛 (R)-卡洛芬 (N-(Boc)-2-吲哚基)二甲基硅烷醇钠 (E)-2-氰基-3-(5-(2-辛基-7-(4-(对甲苯基)-1,2,3,3a,4,8b-六氢环戊[b]吲哚-7-基)-2H-苯并[d][1,2,3]三唑-4-基)噻吩-2-基)丙烯酸 (4aS,9bR)-6-溴-2,3,4,4a,5,9b-六氢-1H-吡啶并[4,3-B]吲哚 (3Z)-3-(1H-咪唑-5-基亚甲基)-5-甲氧基-1H-吲哚-2-酮 (3Z)-3-[[[4-(二甲基氨基)苯基]亚甲基]-1H-吲哚-2-酮 (3R)-(-)-3-(1-甲基吲哚-3-基)丁酸甲酯 (3-氯-4,5-二氢-1,2-恶唑-5-基)(1,3-二氧代-1,3-二氢-2H-异吲哚-2-基)乙酸 齐多美辛 鸭脚树叶碱 鸭脚木碱,鸡骨常山碱 鲜麦得新糖 高氯酸1,1’-二(十六烷基)-3,3,3’,3’-四甲基吲哚碳菁 马鲁司特 马鞭草(VERBENAOFFICINALIS)提取物 马来酸阿洛司琼 马来酸替加色罗 顺式-ent-他达拉非 顺式-1,3,4,4a,5,9b-六氢-2H-吡啶并[4,3-b]吲哚-2-甲酸乙酯 顺式-(+-)-3,4-二氢-8-氯-4'-甲基-4-(甲基氨基)-螺(苯并(cd)吲哚-5(1H),2'(5'H)-呋喃)-5'-酮 靛青二磺酸二钾盐 靛藍四磺酸 靛红联二甲酚 靛红磺酸钠 靛红磺酸 靛红乙烯硫代缩酮 靛红-7-甲酸甲酯 靛红-5-磺酸钠 靛红-5-磺酸 靛红-5-硫酸钠盐二水 靛红-5-甲酸甲酯 靛红 靛玉红衍生物E804 靛玉红3'-单肟5-磺酸 靛玉红-3'-单肟 靛玉红 靛噻 青色素3联己酸染料,钾盐 雷马曲班 雷莫司琼杂质13 雷莫司琼杂质12 雷莫司琼杂质 雷替尼卜定 雄甾-1,4-二烯-3,17-二酮 阿霉素的代谢产物盐酸盐 阿贝卡尔 阿西美辛杂质3