作者:Daniel Hutter、Monika O. Blaettler、Steven A. Benner
DOI:10.1002/1522-2675(200209)85:9<2777::aid-hlca2777>3.0.co;2-1
日期:2002.9
Chimeric DNA molecules containing four different linking groups, the natural phosphate, 5'-methylenephosphonate. bis(methylene)phosphinate, and bis(methylene) sulfone (see Fig.1), were directly compared for their ability to form duplexes with complementary DNA and DNA chimeras. From melting temperatures for analogous complementary sequences, general conclusions about the impact of geometric distortion of the internucleotide linkage around the two P-O-C bridges were drawn, as were conclusions about the impact on duplex stability that arises from the removal of the negative charge in the linking group. Each structural perturbation diminished the melting temperature, by ca. -2.5degrees per modification for the 5'-methylenephosphonate, -3.5degrees per modification for the bis(methylene)phosphinate, and -4.5degrees per modification for the bis(methylene) sulfone linker. These results have implications for DNA chemistry including the design of 'antisense' candidates and the proposal of alternative genetic materials in the search for non-terrean life.