摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

3-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-(2-羧基乙基氧基)乙氧基]乙氧基]乙氧基]乙氧基]乙氧基]乙氧基]乙氧基]乙基二硫基]乙氧基]乙氧基]乙氧基]乙氧基]乙氧基]乙氧基]乙氧基]乙氧基]丙酸 | 873013-93-5

中文名称
3-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-(2-羧基乙基氧基)乙氧基]乙氧基]乙氧基]乙氧基]乙氧基]乙氧基]乙氧基]乙基二硫基]乙氧基]乙氧基]乙氧基]乙氧基]乙氧基]乙氧基]乙氧基]乙氧基]丙酸
中文别名
PEG酸二硫醚(聚合度为7)
英文名称
4,7,10,13,16,19,22,25,32,35,38,41,44,47,50,53-hexadecaoxa-28,29-dithiahexapentacontanedioic acid
英文别名
4,7,10,13,16,19,22,25,32,35,38,41,44,47,50,53-Hexadecaoxa-28,29-dithiahexapentacontane-1,56-dioic acid;3-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-(2-carboxyethoxy)ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethyldisulfanyl]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]ethoxy]propanoic acid
3-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-(2-羧基乙基氧基)乙氧基]乙氧基]乙氧基]乙氧基]乙氧基]乙氧基]乙氧基]乙基二硫基]乙氧基]乙氧基]乙氧基]乙氧基]乙氧基]乙氧基]乙氧基]乙氧基]丙酸化学式
CAS
873013-93-5
化学式
C38H74O20S2
mdl
——
分子量
915.126
InChiKey
SSUZECNFRDBXHC-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    -2.5
  • 重原子数:
    60
  • 可旋转键数:
    55
  • 环数:
    0.0
  • sp3杂化的碳原子比例:
    0.95
  • 拓扑面积:
    273
  • 氢给体数:
    2
  • 氢受体数:
    22

安全信息

  • 海关编码:
    2930909090

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    参考文献:
    名称:
    Cyclic RGD Functionalized Gold Nanoparticles for Tumor Targeting
    摘要:
    Integrin alpha(v)beta(3) is an adhesion molecule involved in physiological and pathological angiogenesis as well as. tumor invasion and metastasis. Therefore, it is considered an important target for molecular imaging and delivery of therapeutics for cancer, and there is a strong interest in developing novel agents interacting with this protein. Nevertheless, the interaction of individual ligands is often still weak for efficient tumor targeting, and many research groups have synthesized multivalent displays in order to overcome this problem. Gold nanoparticles can be considered a smart platform for polyvalent presentation on account of their globular shape, tunable size, facile surface chemistry, and biocompatibility. Moreover, their unique physical properties render gold nanoparticles ideal candidates for tumor diagnosis and therapy. Here, we report the synthesis. and characterization Of gold nanoparticles functionalized with cRGD integrin ligand and their employment for targeting human cancer cells expressing alpha(v)beta(3) integrin.
    DOI:
    10.1021/bc100448r
  • 作为产物:
    参考文献:
    名称:
    Cyclic RGD Functionalized Gold Nanoparticles for Tumor Targeting
    摘要:
    Integrin alpha(v)beta(3) is an adhesion molecule involved in physiological and pathological angiogenesis as well as. tumor invasion and metastasis. Therefore, it is considered an important target for molecular imaging and delivery of therapeutics for cancer, and there is a strong interest in developing novel agents interacting with this protein. Nevertheless, the interaction of individual ligands is often still weak for efficient tumor targeting, and many research groups have synthesized multivalent displays in order to overcome this problem. Gold nanoparticles can be considered a smart platform for polyvalent presentation on account of their globular shape, tunable size, facile surface chemistry, and biocompatibility. Moreover, their unique physical properties render gold nanoparticles ideal candidates for tumor diagnosis and therapy. Here, we report the synthesis. and characterization Of gold nanoparticles functionalized with cRGD integrin ligand and their employment for targeting human cancer cells expressing alpha(v)beta(3) integrin.
    DOI:
    10.1021/bc100448r
点击查看最新优质反应信息

文献信息

  • 用于蛋白质修饰的聚乙二醇链接剂及其合成方法
    申请人:宜昌博仁凯润药业有限公司
    公开号:CN114149352A
    公开(公告)日:2022-03-08
    本发明公开了用于蛋白质修饰的聚乙二醇链接剂,化学结构式为其合成方法包括S1:化合物2的合成;S2:化合物3的合成;S3:化合物4的合成;S4:化合物5的合成;S5:化合物6的合成;S6:化合物7的合成。该用于蛋白质修饰的聚乙二醇链接剂中间是双流巯基,使用此类链接剂用于蛋白质的交联或者小分子聚合物的交联可以使使用此类化合物交联过的蛋白质或者聚合物在特定的生物环境下降解,从而释放出包裹或者偶联的目标分子,且是两头羧酸,可以方便利用酰胺键和蛋白质欧联,或者修饰纳米脂质体制剂材料的带有氨基单体,其合成方法原料易得,操作简单,成本低。
  • Direct Writing of Metal Nanoparticle Films Inside Sealed Microfluidic Channels
    作者:Edward T. Castellana、Sho Kataoka、Fernando Albertorio、Paul S. Cremer
    DOI:10.1021/ac051288j
    日期:2006.1.1
    Herein we demonstrate the ability to pattern Ag nanoparticle films of arbitrary geometry inside sealed PDMS/TiO2/glass microfluidic devices. The technique can be employed with aqueous solutions at room temperature under mild conditions. A 6 nm TiO2 film is first deposited onto a planar Pyrex or silica substrate, which is subsequently bonded to a PDMS mold. UV light is then exposed through the device to reduce Ag+ from an aqueous solution to create a monolayer-thick film of Ag nanoparticles. We demonstrate that this on-chip deposition method can be exploited in a parallel fashion to synthesize nanoparticles of varying size by independently controlling the solution conditions in each microchannel in which the film is formed. The film morphology was checked by atomic force microscopy, and the results showed that the size of the nanoparticles was sensitive to solution pH. Additionally, we illustrate the ability to biofunctionalize these films with ligands for protein capture. The results indicated that this could be done with good discrimination between addressed locations and background. The technique appears to be quite general, and films of Pd, Cu, and Au could also be patterned.
    在此,我们展示了在密封的 PDMS/TiO2/ 玻璃微流控装置内绘制任意几何形状的银纳米粒子薄膜的能力。该技术可在室温温和条件下使用水溶液。首先将 6 nm 的 TiO2 薄膜沉积到平面派莱克斯或二氧化硅基底上,然后将其粘合到 PDMS 模具上。然后通过该装置照射紫外线,还原水溶液中的 Ag+,形成单层厚的 Ag 纳米粒子薄膜。我们证明了这种片上沉积方法可以并行利用,通过独立控制形成薄膜的每个微通道中的溶液条件,合成不同大小的纳米颗粒。我们用原子力显微镜检查了薄膜的形态,结果表明纳米粒子的大小对溶液的 pH 值很敏感。此外,我们还说明了用配体对这些薄膜进行生物功能化以捕获蛋白质的能力。结果表明,这样做可以很好地区分处理位置和背景。该技术似乎非常通用,钯、铜和金薄膜也可以图案化。
  • Mutants of cocaine esterase
    申请人:The Trustees of Columbia University in the City of New York
    公开号:US10160960B2
    公开(公告)日:2018-12-25
    Provided are mutant cocaine esterase polypeptides and PEGylated formulations thereof.
    本文提供了突变型可卡因酯酶多肽及其聚乙二醇化制剂。
  • Glucose conjugated gold nanoparticle
    申请人:Bar-Ilan University
    公开号:US10478132B2
    公开(公告)日:2019-11-19
    Composition methods and kits for diagnosing and treating tumors within a subject. The compositions disclosed comprise: a gold nanoparticle; PEG or derivatives thereof, wherein said PEG or derivatives thereof have a molecular weight of 400 to 1500 Dalton; and a 2-Deoxy-D-glucose, wherein the PEG or derivatives thereof are linked to the gold nanoparticle and to said 2-Deoxy-D-Glucose, and wherein the 2-Deoxy-D-Glucose is linked to the PEG or derivatives thereof at the 2-Carbon position of the 2-Deoxy-D-Glucose.
    用于诊断和治疗受试者体内肿瘤的组合物方法和试剂盒。所公开的组合物包括:金纳米粒子;PEG 或其衍生物,其中所述 PEG 或其衍生物的分子量为 400 至 1500 道尔顿;以及 2-脱氧-D-葡萄糖,其中所述 PEG 或其衍生物与金纳米粒子和所述 2-脱氧-D-葡萄糖相连,并且所述 2-脱氧-D-葡萄糖在 2-脱氧-D-葡萄糖的 2 碳位置与 PEG 或其衍生物相连。
  • Orthogonally Dual-Clickable Janus Nanoparticles via a Cyclic Templating Strategy
    作者:Shiyi Zhang、Zhou Li、Sandani Samarajeewa、Guorong Sun、Chao Yang、Karen L. Wooley
    DOI:10.1021/ja203133h
    日期:2011.7.27
    Synthetic asymmetrical systems, Janus particles and patchy particles, are capable of undergoing hierarchical assembly processes that mimic those of Nature, to serve as switchable devices, optical probes, phase-transfer catalysts, and multifunctional drug carriers, each of which benefits from opposing surface patterns that behave differently. Production of nanometer-sized Janus particles that are equipped with efficient chemistries remains a challenge. A robust Janus-faced polymer nanoparticle framework that presents two orthogonally click-reactive surface chemistries has been generated by a recyclable strategy that involves reactive functional group transfer by templating against gold nanoparticle substrates. This anisotropic functionalization approach is compatible with a wide range of soft materials, providing Janus nanoparticles for the construction of dual-functionalized devices by accurately controlling chemical functionality at the nanoscopic level.
查看更多

同类化合物

(甲基3-(二甲基氨基)-2-苯基-2H-azirene-2-羧酸乙酯) (±)-盐酸氯吡格雷 (±)-丙酰肉碱氯化物 (d(CH2)51,Tyr(Me)2,Arg8)-血管加压素 (S)-(+)-α-氨基-4-羧基-2-甲基苯乙酸 (S)-阿拉考特盐酸盐 (S)-赖诺普利-d5钠 (S)-2-氨基-5-氧代己酸,氢溴酸盐 (S)-2-[3-[(1R,2R)-2-(二丙基氨基)环己基]硫脲基]-N-异丙基-3,3-二甲基丁酰胺 (S)-1-(4-氨基氧基乙酰胺基苄基)乙二胺四乙酸 (S)-1-[N-[3-苯基-1-[(苯基甲氧基)羰基]丙基]-L-丙氨酰基]-L-脯氨酸 (R)-乙基N-甲酰基-N-(1-苯乙基)甘氨酸 (R)-丙酰肉碱-d3氯化物 (R)-4-N-Cbz-哌嗪-2-甲酸甲酯 (R)-3-氨基-2-苄基丙酸盐酸盐 (R)-1-(3-溴-2-甲基-1-氧丙基)-L-脯氨酸 (N-[(苄氧基)羰基]丙氨酰-N〜5〜-(diaminomethylidene)鸟氨酸) (6-氯-2-吲哚基甲基)乙酰氨基丙二酸二乙酯 (4R)-N-亚硝基噻唑烷-4-羧酸 (3R)-1-噻-4-氮杂螺[4.4]壬烷-3-羧酸 (3-硝基-1H-1,2,4-三唑-1-基)乙酸乙酯 (2S,3S,5S)-2-氨基-3-羟基-1,6-二苯己烷-5-N-氨基甲酰基-L-缬氨酸 (2S,3S)-3-((S)-1-((1-(4-氟苯基)-1H-1,2,3-三唑-4-基)-甲基氨基)-1-氧-3-(噻唑-4-基)丙-2-基氨基甲酰基)-环氧乙烷-2-羧酸 (2S)-2,6-二氨基-N-[4-(5-氟-1,3-苯并噻唑-2-基)-2-甲基苯基]己酰胺二盐酸盐 (2S)-2-氨基-3-甲基-N-2-吡啶基丁酰胺 (2S)-2-氨基-3,3-二甲基-N-(苯基甲基)丁酰胺, (2S,4R)-1-((S)-2-氨基-3,3-二甲基丁酰基)-4-羟基-N-(4-(4-甲基噻唑-5-基)苄基)吡咯烷-2-甲酰胺盐酸盐 (2R,3'S)苯那普利叔丁基酯d5 (2R)-2-氨基-3,3-二甲基-N-(苯甲基)丁酰胺 (2-氯丙烯基)草酰氯 (1S,3S,5S)-2-Boc-2-氮杂双环[3.1.0]己烷-3-羧酸 (1R,4R,5S,6R)-4-氨基-2-氧杂双环[3.1.0]己烷-4,6-二羧酸 齐特巴坦 齐德巴坦钠盐 齐墩果-12-烯-28-酸,2,3-二羟基-,苯基甲基酯,(2a,3a)- 齐墩果-12-烯-28-酸,2,3-二羟基-,羧基甲基酯,(2a,3b)-(9CI) 黄酮-8-乙酸二甲氨基乙基酯 黄荧菌素 黄体生成激素释放激素 (1-5) 酰肼 黄体瑞林 麦醇溶蛋白 麦角硫因 麦芽聚糖六乙酸酯 麦根酸 麦撒奎 鹅膏氨酸 鹅膏氨酸 鸦胆子酸A甲酯 鸦胆子酸A 鸟氨酸缩合物