COMPARE analysis of the toxicity of an iminoquinone derivative of the imidazo[5,4-f]benzimidazoles with NAD(P)H:quinone oxidoreductase 1 (NQO1) activity and computational docking of quinones as NQO1 substrates
摘要:
Synthesis and cytotoxicity of imidazo[5,4-f]benzimidazolequinones and iminoquinone derivatives is described, enabling structure-activity relationships to be obtained. The most promising compound (an iminoquinone derivative) has undergone National Cancer Institute (NCI) 60 cell line (single and five dose) screening, and using the NCI COMPARE program, has shown correlation to NQO1 activity and to other NQO1 substrates. Common structural features suggest that the iminoquinone moiety is significant with regard to NQO1 specificity. Computational docking into the active site of NQO1 was performed, and the first comprehensive mitomycin C (MMC)-NQO1 docking study is presented. Small distances for hydride reduction and high binding affinities are characteristic of MMC and of iminoquinones showing correlations with NQO1 via COMPARE analysis. Docking also indicated that the presence of a substituent capable of hydrogen bonding to the His194 residue is important in influencing the orientation of the substrate in the NQO1 active site, leading to more efficient reduction. (C) 2012 Elsevier Ltd. All rights reserved.
One-pot double intramolecular homolytic aromatic substitution routes to dialicyclic ring fused imidazobenzimidazolequinones and preliminary analysis of anticancer activity
COMPARE analysis of the toxicity of an iminoquinone derivative of the imidazo[5,4-f]benzimidazoles with NAD(P)H:quinone oxidoreductase 1 (NQO1) activity and computational docking of quinones as NQO1 substrates
作者:Vincent Fagan、Sarah Bonham、Michael P. Carty、Patricia Saenz-Méndez、Leif A. Eriksson、Fawaz Aldabbagh
DOI:10.1016/j.bmc.2012.03.063
日期:2012.5
Synthesis and cytotoxicity of imidazo[5,4-f]benzimidazolequinones and iminoquinone derivatives is described, enabling structure-activity relationships to be obtained. The most promising compound (an iminoquinone derivative) has undergone National Cancer Institute (NCI) 60 cell line (single and five dose) screening, and using the NCI COMPARE program, has shown correlation to NQO1 activity and to other NQO1 substrates. Common structural features suggest that the iminoquinone moiety is significant with regard to NQO1 specificity. Computational docking into the active site of NQO1 was performed, and the first comprehensive mitomycin C (MMC)-NQO1 docking study is presented. Small distances for hydride reduction and high binding affinities are characteristic of MMC and of iminoquinones showing correlations with NQO1 via COMPARE analysis. Docking also indicated that the presence of a substituent capable of hydrogen bonding to the His194 residue is important in influencing the orientation of the substrate in the NQO1 active site, leading to more efficient reduction. (C) 2012 Elsevier Ltd. All rights reserved.
One-pot double intramolecular homolytic aromatic substitution routes to dialicyclic ring fused imidazobenzimidazolequinones and preliminary analysis of anticancer activity
作者:Vincent Fagan、Sarah Bonham、Michael P. Carty、Fawaz Aldabbagh
DOI:10.1039/c003511d
日期:——
Bu3SnH/1,1′-azobis(cyclohexanecarbonitrile) (ACN)-mediated five, six, and seven-membered double alkyl radical cyclizations onto imidazo[5,4-f]benzimidazole and imidazo[4,5-f]benzimidazole are described. The quinone derivatives evaluated show selective toxicity towards human cervical (HeLa) and prostate (DU145) cancer cell lines (with negligible toxicity towards a normal human cell line, GM00637). Only the Fremy oxidation of the 6-aminoimidazo[5,4-f]benzimidazole gave iminoquinone, which showed high specificity towards the prostate cancer cell line (DU145).