摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

2-bromo-N-(2-iodophenyl)acetamide | 1339628-12-4

中文名称
——
中文别名
——
英文名称
2-bromo-N-(2-iodophenyl)acetamide
英文别名
——
2-bromo-N-(2-iodophenyl)acetamide化学式
CAS
1339628-12-4
化学式
C8H7BrINO
mdl
MFCD18839922
分子量
339.958
InChiKey
MRBIPBIGIOLLHJ-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

物化性质

  • 沸点:
    406.9±30.0 °C(Predicted)
  • 密度:
    2.154±0.06 g/cm3(Predicted)

计算性质

  • 辛醇/水分配系数(LogP):
    2.3
  • 重原子数:
    12
  • 可旋转键数:
    2
  • 环数:
    1.0
  • sp3杂化的碳原子比例:
    0.125
  • 拓扑面积:
    29.1
  • 氢给体数:
    1
  • 氢受体数:
    1

上下游信息

  • 下游产品
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    描述:
    2-bromo-N-(2-iodophenyl)acetamideCrabtree's catalyst氢气 、 sodium hydride 作用下, 以 四氢呋喃二氯甲烷1,2-二氯乙烷 、 mineral oil 为溶剂, 20.0~90.0 ℃ 、4.05 MPa 条件下, 反应 59.0h, 生成 rac-3-(8-ethyl-5,6,7,8-tetrahydroindolizin-8-yl)-N-(2-iodophenyl)propanamide
    参考文献:
    名称:
    (±)-Rhazinal的形式全合成:评估自由基方法
    摘要:
    摘要 我们描述了外消旋的天然产物鼠李糖苷的正式全合成,方法是将最近报道的四氢吲哚嗪中间体快速合成成由Trauner报道的环化前体。合成着重于功能基团的早期和趋同引入,同时描述了该方法遇到的合成挑战。 我们描述了外消旋的天然产物鼠李糖苷的正式全合成,方法是将最近报道的四氢吲哚嗪中间体快速合成成由Trauner报道的环化前体。合成着重于功能基团的早期和趋同引入,同时描述了该方法遇到的合成挑战。
    DOI:
    10.1055/s-0036-1588956
  • 作为产物:
    描述:
    2-碘苯胺溴乙酰溴三乙胺 作用下, 以 二氯甲烷 为溶剂, 反应 1.0h, 以88%的产率得到2-bromo-N-(2-iodophenyl)acetamide
    参考文献:
    名称:
    (±)-Rhazinal的形式全合成:评估自由基方法
    摘要:
    摘要 我们描述了外消旋的天然产物鼠李糖苷的正式全合成,方法是将最近报道的四氢吲哚嗪中间体快速合成成由Trauner报道的环化前体。合成着重于功能基团的早期和趋同引入,同时描述了该方法遇到的合成挑战。 我们描述了外消旋的天然产物鼠李糖苷的正式全合成,方法是将最近报道的四氢吲哚嗪中间体快速合成成由Trauner报道的环化前体。合成着重于功能基团的早期和趋同引入,同时描述了该方法遇到的合成挑战。
    DOI:
    10.1055/s-0036-1588956
点击查看最新优质反应信息

文献信息

  • Nickel-Mediated Inter- and Intramolecular C–S Coupling of Thiols and Thioacetates with Aryl Iodides at Room Temperature
    作者:Xiao-Bo Xu、Jian Liu、Jian-Jian Zhang、Ya-Wen Wang、Yu Peng
    DOI:10.1021/ol303366u
    日期:2013.2.1
    A Ni(0)-catalyzed intermolecular cross-coupling of various functionalized thiols and aryl Iodides has been developed and successfully extended to less explored intramolecular versions, where thioacetates could also be utilized as the strategic surrogate. Air-stable precatalysts, very mild conditions, and an easy protocol allow rapid access to medicinally useful aryl thioethers, as demonstrated in the facile synthesis of (+/-)-chuangxinmycin as a key step.
  • Three-Step Synthesis of Triazolobenzodiazepinones via Sonogashira/Huisgen Protocol
    作者:Giorgio Molteni
    DOI:10.3987/com-13-12752
    日期:——
    The sequential Sonogashira coupling/intramolecular azide cycloaddition (Huisgen cycloaddition) protocol was performed onto N-(2-iodophenyl)-2-azidoacetamide as the acyclic precursor giving tricyclic 1,2,3-triazolo-[5,1-d][1,4]benzodiazepin-2-ones. These target products were thus obtained through a three-step synthesis in variable yields depending upon the substituent placed onto the acetylenic counterpart. The influence of catalyst concentration, reaction temperature and reaction medium upon cycloadduct yields were also studied.
  • Ebselen Inhibits Hepatitis C Virus NS3 Helicase Binding to Nucleic Acid and Prevents Viral Replication
    作者:Sourav Mukherjee、Warren S. Weiner、Chad E. Schroeder、Denise S. Simpson、Alicia M. Hanson、Noreena L. Sweeney、Rachel K. Marvin、Jean Ndjomou、Rajesh Kolli、Dragan Isailovic、Frank J. Schoenen、David N. Frick
    DOI:10.1021/cb500512z
    日期:2014.10.17
    The hepatitis C virus (HCV) nonstructural protein 3 (NS3) is both a protease, which cleaves viral and host proteins, and a helicase that separates nucleic acid strands, using ATP hydrolysis to fuel the reaction. Many antiviral drugs, and compounds in clinical trials, target the NS3 protease, but few helicase inhibitors that function as antivirals have been reported. This study focuses on the analysis of the mechanism by which ebselen (2-phenyl-1,2-benzisoselenazol-3-one), a compound previously shown to be a HCV antiviral agent, inhibits the NS3 helicase. Ebselen inhibited the abilities of NS3 to unwind nucleic acids, to bind nucleic acids, and to hydrolyze ATP, and about 1 mu M ebselen was sufficient to inhibit each of these activities by 50%. However, ebselen had no effect on the activity of the NS3 protease, even at 100 times higher ebselen concentrations. At concentrations below 10 mu M, the ability of ebselen to inhibit HCV helicase was reversible, but prolonged incubation of HCV helicase with higher ebselen concentrations led to irreversible inhibition and the formation of covalent adducts between ebselen and all 14 cysteines present in HCV helicase. Ebselen analogues with sulfur replacing the selenium were just as potent HCV helicase inhibitors as ebselen, but the length of the linker between the phenyl and benzisoselenazol rings was critical. Modifications of the phenyl ring also affected compound potency over 30-fold, and ebselen was a far more potent helicase inhibitor than other, structurally unrelated, thiol-modifying agents. Ebselen analogues were also more effective antiviral agents, and they were less toxic to hepatocytes than ebselen. Although the above structure-activity relationship studies suggest that ebselen targets a specific site on NS3, we were unable to confirm binding to either the NS3 ATP binding site or nucleic acid binding cleft by examining the effects of ebselen on NS3 proteins lacking key cysteines.
查看更多

同类化合物

(βS)-β-氨基-4-(4-羟基苯氧基)-3,5-二碘苯甲丙醇 (S,S)-邻甲苯基-DIPAMP (S)-(-)-7'-〔4(S)-(苄基)恶唑-2-基]-7-二(3,5-二-叔丁基苯基)膦基-2,2',3,3'-四氢-1,1-螺二氢茚 (S)-盐酸沙丁胺醇 (S)-3-(叔丁基)-4-(2,6-二甲氧基苯基)-2,3-二氢苯并[d][1,3]氧磷杂环戊二烯 (S)-2,2'-双[双(3,5-三氟甲基苯基)膦基]-4,4',6,6'-四甲氧基联苯 (S)-1-[3,5-双(三氟甲基)苯基]-3-[1-(二甲基氨基)-3-甲基丁烷-2-基]硫脲 (R)富马酸托特罗定 (R)-(-)-盐酸尼古地平 (R)-(-)-4,12-双(二苯基膦基)[2.2]对环芳烷(1,5环辛二烯)铑(I)四氟硼酸盐 (R)-(+)-7-双(3,5-二叔丁基苯基)膦基7''-[((6-甲基吡啶-2-基甲基)氨基]-2,2'',3,3''-四氢-1,1''-螺双茚满 (R)-(+)-7-双(3,5-二叔丁基苯基)膦基7''-[(4-叔丁基吡啶-2-基甲基)氨基]-2,2'',3,3''-四氢-1,1''-螺双茚满 (R)-(+)-7-双(3,5-二叔丁基苯基)膦基7''-[(3-甲基吡啶-2-基甲基)氨基]-2,2'',3,3''-四氢-1,1''-螺双茚满 (R)-(+)-4,7-双(3,5-二-叔丁基苯基)膦基-7“-[(吡啶-2-基甲基)氨基]-2,2”,3,3'-四氢1,1'-螺二茚满 (R)-3-(叔丁基)-4-(2,6-二苯氧基苯基)-2,3-二氢苯并[d][1,3]氧杂磷杂环戊烯 (R)-2-[((二苯基膦基)甲基]吡咯烷 (R)-1-[3,5-双(三氟甲基)苯基]-3-[1-(二甲基氨基)-3-甲基丁烷-2-基]硫脲 (N-(4-甲氧基苯基)-N-甲基-3-(1-哌啶基)丙-2-烯酰胺) (5-溴-2-羟基苯基)-4-氯苯甲酮 (5-溴-2-氯苯基)(4-羟基苯基)甲酮 (5-氧代-3-苯基-2,5-二氢-1,2,3,4-oxatriazol-3-鎓) (4S,5R)-4-甲基-5-苯基-1,2,3-氧代噻唑烷-2,2-二氧化物-3-羧酸叔丁酯 (4S,4''S)-2,2''-亚环戊基双[4,5-二氢-4-(苯甲基)恶唑] (4-溴苯基)-[2-氟-4-[6-[甲基(丙-2-烯基)氨基]己氧基]苯基]甲酮 (4-丁氧基苯甲基)三苯基溴化磷 (3aR,8aR)-(-)-4,4,8,8-四(3,5-二甲基苯基)四氢-2,2-二甲基-6-苯基-1,3-二氧戊环[4,5-e]二恶唑磷 (3aR,6aS)-5-氧代六氢环戊基[c]吡咯-2(1H)-羧酸酯 (2Z)-3-[[(4-氯苯基)氨基]-2-氰基丙烯酸乙酯 (2S,3S,5S)-5-(叔丁氧基甲酰氨基)-2-(N-5-噻唑基-甲氧羰基)氨基-1,6-二苯基-3-羟基己烷 (2S,2''S,3S,3''S)-3,3''-二叔丁基-4,4''-双(2,6-二甲氧基苯基)-2,2'',3,3''-四氢-2,2''-联苯并[d][1,3]氧杂磷杂戊环 (2S)-(-)-2-{[[[[3,5-双(氟代甲基)苯基]氨基]硫代甲基]氨基}-N-(二苯基甲基)-N,3,3-三甲基丁酰胺 (2S)-2-[[[[[((1S,2S)-2-氨基环己基]氨基]硫代甲基]氨基]-N-(二苯甲基)-N,3,3-三甲基丁酰胺 (2S)-2-[[[[[[((1R,2R)-2-氨基环己基]氨基]硫代甲基]氨基]-N-(二苯甲基)-N,3,3-三甲基丁酰胺 (2-硝基苯基)磷酸三酰胺 (2,6-二氯苯基)乙酰氯 (2,3-二甲氧基-5-甲基苯基)硼酸 (1S,2S,3S,5S)-5-叠氮基-3-(苯基甲氧基)-2-[(苯基甲氧基)甲基]环戊醇 (1S,2S,3R,5R)-2-(苄氧基)甲基-6-氧杂双环[3.1.0]己-3-醇 (1-(4-氟苯基)环丙基)甲胺盐酸盐 (1-(3-溴苯基)环丁基)甲胺盐酸盐 (1-(2-氯苯基)环丁基)甲胺盐酸盐 (1-(2-氟苯基)环丙基)甲胺盐酸盐 (1-(2,6-二氟苯基)环丙基)甲胺盐酸盐 (-)-去甲基西布曲明 龙蒿油 龙胆酸钠 龙胆酸叔丁酯 龙胆酸 龙胆紫-d6 龙胆紫