摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

(S)-2-Amino-4-[(R)-2-{3-[(R)-2-((S)-4-amino-4-carboxy-butyrylamino)-2-(carboxymethyl-carbamoyl)-ethylsulfanylcarbonylamino]-2-methyl-phenylcarbamoylsulfanyl}-1-(carboxymethyl-carbamoyl)-ethylcarbamoyl]-butyric acid | 188910-15-8

中文名称
——
中文别名
——
英文名称
(S)-2-Amino-4-[(R)-2-{3-[(R)-2-((S)-4-amino-4-carboxy-butyrylamino)-2-(carboxymethyl-carbamoyl)-ethylsulfanylcarbonylamino]-2-methyl-phenylcarbamoylsulfanyl}-1-(carboxymethyl-carbamoyl)-ethylcarbamoyl]-butyric acid
英文别名
——
(S)-2-Amino-4-[(R)-2-{3-[(R)-2-((S)-4-amino-4-carboxy-butyrylamino)-2-(carboxymethyl-carbamoyl)-ethylsulfanylcarbonylamino]-2-methyl-phenylcarbamoylsulfanyl}-1-(carboxymethyl-carbamoyl)-ethylcarbamoyl]-butyric acid化学式
CAS
188910-15-8
化学式
C29H40N8O14S2
mdl
——
分子量
788.814
InChiKey
PRPKQTHLDGJWTP-LNMJFAINSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    -1.72
  • 重原子数:
    53.0
  • 可旋转键数:
    22.0
  • 环数:
    1.0
  • sp3杂化的碳原子比例:
    0.45
  • 拓扑面积:
    375.84
  • 氢给体数:
    12.0
  • 氢受体数:
    14.0

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    参考文献:
    名称:
    Formation, Solvolysis, and Transcarbamoylation Reactions of Bis(S-glutathionyl) Adducts of 2,4- and 2,6-Diisocyanatotoluene
    摘要:
    During our ongoing studies of the reactions of toluene diisocyanate (2,4- and 2,6-diisocyanatotoluene, TDI) in vivo, it became apparent that reactive form(s) of these diisocyanates reach(es) the circulatory system after passage through the respiratory system. Based on recent work by others regarding the transcarbamoylation reactions of monoisocyanates, we hypothesized that the reactive form could be masked as an S-thiocarbamoylglutathione adduct of one or more of the isocyanato moieties. In this study, the glutathione adducts of 2,4- and 2,6-diisocyanatotoluene were synthesized under physiological conditions. Bis adducts were the major products when near-equimolar amounts of glutathione and the individual diisocyanato compounds were mixed at physiological pH, and were formed in high yield. Little to no mono adducts formed under these reaction conditions. The masses of the bis adducts were confirmed by electrospray mass spectrometry (MS), and H-1 NMR analysis strongly suggested that the thiol of the cysteine residue of glutathione was the nucleophile in each case. The rates of solvolysis of the two bis adducts in aqueous buffer under conditions of physiological temperature and pH were determined, and electrospray MS analysis showed that the corresponding mono(glutathionyl)-TDIs were formed in these reactions. Incubation in, vitro of each of the bis(glutathionyl)-TDI adducts with a 12 amino acid peptide (Thr-Cys-Val-Glu-Trp-Leu-Arg-Arg-Tyr-Leu-Lys-Asn) at pH 7.5 resulted in transfer of one mono(glutathionyl)-toluylisocyanato moiety to the peptide as detected by HPLC and on-line electrospray MS analyses. In both the solvolysis and transfer experiments, the 2,4-TDI-derived bis(glutathionyl) adduct reacted most quickly, while both the bis(glutathionyl)-2,6-TDI adduct and its transfer product with the peptide were more stable than their 2,4-TDI-derived counterparts. The results indicate high stoichiometry in formation and ready transfer to nucleophilic sites of protein, and suggest that the isocyanato moiety of both 2,4- and 2,6-TDI may be regenerated in vivo from their bis(glutathionyl) adducts. As a consequence, the thiol status of particular tissues may be a contributing factor to individual TDI toxicity susceptibility, and a mechanism by which toxicity at sites distant to the initial point of contact may be proposed.
    DOI:
    10.1021/tx960201+
  • 作为产物:
    描述:
    谷胱甘肽甲苯2,6-二异氰酸酯碳酸氢铵 作用下, 反应 0.17h, 以66%的产率得到(S)-2-Amino-4-[(R)-2-{3-[(R)-2-((S)-4-amino-4-carboxy-butyrylamino)-2-(carboxymethyl-carbamoyl)-ethylsulfanylcarbonylamino]-2-methyl-phenylcarbamoylsulfanyl}-1-(carboxymethyl-carbamoyl)-ethylcarbamoyl]-butyric acid
    参考文献:
    名称:
    Formation, Solvolysis, and Transcarbamoylation Reactions of Bis(S-glutathionyl) Adducts of 2,4- and 2,6-Diisocyanatotoluene
    摘要:
    During our ongoing studies of the reactions of toluene diisocyanate (2,4- and 2,6-diisocyanatotoluene, TDI) in vivo, it became apparent that reactive form(s) of these diisocyanates reach(es) the circulatory system after passage through the respiratory system. Based on recent work by others regarding the transcarbamoylation reactions of monoisocyanates, we hypothesized that the reactive form could be masked as an S-thiocarbamoylglutathione adduct of one or more of the isocyanato moieties. In this study, the glutathione adducts of 2,4- and 2,6-diisocyanatotoluene were synthesized under physiological conditions. Bis adducts were the major products when near-equimolar amounts of glutathione and the individual diisocyanato compounds were mixed at physiological pH, and were formed in high yield. Little to no mono adducts formed under these reaction conditions. The masses of the bis adducts were confirmed by electrospray mass spectrometry (MS), and H-1 NMR analysis strongly suggested that the thiol of the cysteine residue of glutathione was the nucleophile in each case. The rates of solvolysis of the two bis adducts in aqueous buffer under conditions of physiological temperature and pH were determined, and electrospray MS analysis showed that the corresponding mono(glutathionyl)-TDIs were formed in these reactions. Incubation in, vitro of each of the bis(glutathionyl)-TDI adducts with a 12 amino acid peptide (Thr-Cys-Val-Glu-Trp-Leu-Arg-Arg-Tyr-Leu-Lys-Asn) at pH 7.5 resulted in transfer of one mono(glutathionyl)-toluylisocyanato moiety to the peptide as detected by HPLC and on-line electrospray MS analyses. In both the solvolysis and transfer experiments, the 2,4-TDI-derived bis(glutathionyl) adduct reacted most quickly, while both the bis(glutathionyl)-2,6-TDI adduct and its transfer product with the peptide were more stable than their 2,4-TDI-derived counterparts. The results indicate high stoichiometry in formation and ready transfer to nucleophilic sites of protein, and suggest that the isocyanato moiety of both 2,4- and 2,6-TDI may be regenerated in vivo from their bis(glutathionyl) adducts. As a consequence, the thiol status of particular tissues may be a contributing factor to individual TDI toxicity susceptibility, and a mechanism by which toxicity at sites distant to the initial point of contact may be proposed.
    DOI:
    10.1021/tx960201+
点击查看最新优质反应信息

同类化合物

(甲基3-(二甲基氨基)-2-苯基-2H-azirene-2-羧酸乙酯) (±)-盐酸氯吡格雷 (±)-丙酰肉碱氯化物 (d(CH2)51,Tyr(Me)2,Arg8)-血管加压素 (S)-(+)-α-氨基-4-羧基-2-甲基苯乙酸 (S)-阿拉考特盐酸盐 (S)-赖诺普利-d5钠 (S)-2-氨基-5-氧代己酸,氢溴酸盐 (S)-2-[[[(1R,2R)-2-[[[3,5-双(叔丁基)-2-羟基苯基]亚甲基]氨基]环己基]硫脲基]-N-苄基-N,3,3-三甲基丁酰胺 (S)-2-[3-[(1R,2R)-2-(二丙基氨基)环己基]硫脲基]-N-异丙基-3,3-二甲基丁酰胺 (S)-1-(4-氨基氧基乙酰胺基苄基)乙二胺四乙酸 (S)-1-[N-[3-苯基-1-[(苯基甲氧基)羰基]丙基]-L-丙氨酰基]-L-脯氨酸 (R)-乙基N-甲酰基-N-(1-苯乙基)甘氨酸 (R)-丙酰肉碱-d3氯化物 (R)-4-N-Cbz-哌嗪-2-甲酸甲酯 (R)-3-氨基-2-苄基丙酸盐酸盐 (R)-1-(3-溴-2-甲基-1-氧丙基)-L-脯氨酸 (N-[(苄氧基)羰基]丙氨酰-N〜5〜-(diaminomethylidene)鸟氨酸) (6-氯-2-吲哚基甲基)乙酰氨基丙二酸二乙酯 (4R)-N-亚硝基噻唑烷-4-羧酸 (3R)-1-噻-4-氮杂螺[4.4]壬烷-3-羧酸 (3-硝基-1H-1,2,4-三唑-1-基)乙酸乙酯 (2S,4R)-Boc-4-环己基-吡咯烷-2-羧酸 (2S,3S,5S)-2-氨基-3-羟基-1,6-二苯己烷-5-N-氨基甲酰基-L-缬氨酸 (2S,3S)-3-((S)-1-((1-(4-氟苯基)-1H-1,2,3-三唑-4-基)-甲基氨基)-1-氧-3-(噻唑-4-基)丙-2-基氨基甲酰基)-环氧乙烷-2-羧酸 (2S)-2,6-二氨基-N-[4-(5-氟-1,3-苯并噻唑-2-基)-2-甲基苯基]己酰胺二盐酸盐 (2S)-2-氨基-N,3,3-三甲基-N-(苯甲基)丁酰胺 (2S)-2-氨基-3-甲基-N-2-吡啶基丁酰胺 (2S)-2-氨基-3,3-二甲基-N-(苯基甲基)丁酰胺, (2S)-2-氨基-3,3-二甲基-N-2-吡啶基丁酰胺 (2S,4R)-1-((S)-2-氨基-3,3-二甲基丁酰基)-4-羟基-N-(4-(4-甲基噻唑-5-基)苄基)吡咯烷-2-甲酰胺盐酸盐 (2R,3'S)苯那普利叔丁基酯d5 (2R)-2-氨基-3,3-二甲基-N-(苯甲基)丁酰胺 (2-氯丙烯基)草酰氯 (1S,3S,5S)-2-Boc-2-氮杂双环[3.1.0]己烷-3-羧酸 (1R,5R,6R)-5-(1-乙基丙氧基)-7-氧杂双环[4.1.0]庚-3-烯-3-羧酸乙基酯 (1R,4R,5S,6R)-4-氨基-2-氧杂双环[3.1.0]己烷-4,6-二羧酸 齐特巴坦 齐德巴坦钠盐 齐墩果-12-烯-28-酸,2,3-二羟基-,苯基甲基酯,(2a,3a)- 齐墩果-12-烯-28-酸,2,3-二羟基-,羧基甲基酯,(2a,3b)-(9CI) 黄酮-8-乙酸二甲氨基乙基酯 黄荧菌素 黄体生成激素释放激素(1-6) 黄体生成激素释放激素 (1-5) 酰肼 黄体瑞林 麦醇溶蛋白 麦角硫因 麦芽聚糖六乙酸酯 麦根酸