摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

3-硝基-N-Boc-L-酪氨酸叔丁酯 | 351534-61-7

中文名称
3-硝基-N-Boc-L-酪氨酸叔丁酯
中文别名
——
英文名称
tert-butyl 2-(Boc-amino)-3-(4-hydroxy-3-nitrophenyl)propanoate
英文别名
3-nitro-N-Boc-L-tyrosine tert-butyl ester;tert-butyl (2S)-3-(4-hydroxy-3-nitrophenyl)-2-[(2-methylpropan-2-yl)oxycarbonylamino]propanoate
3-硝基-N-Boc-L-酪氨酸叔丁酯化学式
CAS
351534-61-7
化学式
C18H26N2O7
mdl
——
分子量
382.414
InChiKey
IZWMIVQTVFZQMQ-LBPRGKRZSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

物化性质

  • 沸点:
    517.7±50.0 °C(Predicted)
  • 密度:
    1.218±0.06 g/cm3(Predicted)

计算性质

  • 辛醇/水分配系数(LogP):
    3.8
  • 重原子数:
    27
  • 可旋转键数:
    8
  • 环数:
    1.0
  • sp3杂化的碳原子比例:
    0.56
  • 拓扑面积:
    131
  • 氢给体数:
    2
  • 氢受体数:
    7

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    描述:
    3-硝基-N-Boc-L-酪氨酸叔丁酯草酰氯N,N-二甲基甲酰胺 作用下, 以 二氯甲烷 为溶剂, 反应 14.0h, 生成 1-carboxy-2-(4-((dibenzylphosphoryl)oxy)-3-nitrophenyl)ethan-1-aminium trifluoroacetate
    参考文献:
    名称:
    用于水相容性 SN2 18F-氟化小分子放射性示踪剂的“AquaF”构建模块
    摘要:
    尽管广泛使用亲水结构单元来掺入18 F 并改善示踪剂药代动力学,但在水中实现有效的离去基团介导的亲核18 F-氟化(不包括18 F/ 19 F-交换)仍然是一个艰巨的挑战。在这里,我们提出了一种水相容的 S N 2 离去基团介导的18 F-氟化方法,该方法采用预共轭的“AquaF”(膦酰胺氟化物)构建块。在 19 个紧凑的四配位五价 P(V)–F 候选物中,“AquaF”结构单元表现出优异的水溶性、在水中足够的18 F-氟化能力以及优异的体内代谢特性。从候选离去基团池中鉴定出两个硝基吡啶醇离去基团,可进一步增强前体水溶性,能够在水中以 10 –2 M –1 s –1级反应速率常数进行18 F-氟化(超过18 F/ 19 F-交换)在室温下。随着放能协同 S N 2 18 F-氟化机制的确认,这种18 F-氟化方法实现了~90%的放射化学转化率,并在盐水中达到了 175 ± 40 GBq/μmol(使用
    DOI:
    10.1021/jacs.4c05854
  • 作为产物:
    参考文献:
    名称:
    Lipid Peroxyl Radicals Mediate Tyrosine Dimerization and Nitration in Membranes
    摘要:
    Protein tyrosine dimerization and nitration by biologically relevant oxidants usually depend on the intermediate formation of tyrosyl radical ((center dot)Tyr). In the case of tyrosine oxidation in proteins associated with hydrophobic biocompartments, the participation of unsaturated fatty acids in the process must be considered since they typically constitute preferential targets for the initial oxidative attack. Thus, we postulate that lipid-derived radicals mediate the one-electron oxidation of tyrosine to (center dot)Tyr, which can afterward react with another (center dot)Tyr or with nitrogen dioxide ((NO2)-N-center dot) to yield 3,3'-dityrosine or 3-nitrotyrosine within the hydrophobic structure, respectively. To test this hypothesis, we have studied tyrosine oxidation in saturated and unsaturated fatty acid-containing phosphatidylcholine (PC) liposomes with an incorporated hydrophobic tyrosine analogue BTBE (N-t-BOC L-tyrosine tert-butyl ester) and its relationship with lipid peroxidation promoted by three oxidation systems, namely, peroxynitrite, hemin, and 2,2'-azobis (2-amidinopropane) hydrochloride. In all cases, significant tyrosine (BTBE) oxidation was seen in unsaturated PC liposomes, in a way that was largely decreased at low oxygen concentrations. Tyrosine oxidation levels paralleled those of lipid peroxidation (i.e., malondialdehyde and lipid hydroperoxides), lipid-derived radicals and BTBE phenoxyl radicals were simultaneously detected by electron spin resonance spin trapping, supporting an association between the two processes. Indeed, alpha-tocopherol, a known reactant with lipid peroxyl radicals (LOO center dot), inhibited both tyrosine oxidation and lipid peroxidation induced by all three oxidation systems. Moreover, oxidant-stimulated liposomal oxygen consumption was dose dependently inhibited by BTBE but not by its phenylalanine analogue, BPBE (N-t-BOC L-phenylalanine tert-butyl ester), providing direct evidence for the reaction between LOO center dot and the phenol moiety in BTBE, with an estimated second-order rate constant of 4.8 x 10(3) M-1 s(-1). In summary, the data presented herein demonstrate that LOO center dot mediates tyrosine oxidation processes in hydrophobic biocompartments and provide a new mechanistic insight to understand protein oxidation and nitration in lipoproteins and biomembranes.
    DOI:
    10.1021/tx900446r
点击查看最新优质反应信息

文献信息

  • Lipid Peroxyl Radicals Mediate Tyrosine Dimerization and Nitration in Membranes
    作者:Silvina Bartesaghi、Jorge Wenzel、Madia Trujillo、Marcos López、Joy Joseph、Balaraman Kalyanaraman、Rafael Radi
    DOI:10.1021/tx900446r
    日期:2010.4.19
    Protein tyrosine dimerization and nitration by biologically relevant oxidants usually depend on the intermediate formation of tyrosyl radical ((center dot)Tyr). In the case of tyrosine oxidation in proteins associated with hydrophobic biocompartments, the participation of unsaturated fatty acids in the process must be considered since they typically constitute preferential targets for the initial oxidative attack. Thus, we postulate that lipid-derived radicals mediate the one-electron oxidation of tyrosine to (center dot)Tyr, which can afterward react with another (center dot)Tyr or with nitrogen dioxide ((NO2)-N-center dot) to yield 3,3'-dityrosine or 3-nitrotyrosine within the hydrophobic structure, respectively. To test this hypothesis, we have studied tyrosine oxidation in saturated and unsaturated fatty acid-containing phosphatidylcholine (PC) liposomes with an incorporated hydrophobic tyrosine analogue BTBE (N-t-BOC L-tyrosine tert-butyl ester) and its relationship with lipid peroxidation promoted by three oxidation systems, namely, peroxynitrite, hemin, and 2,2'-azobis (2-amidinopropane) hydrochloride. In all cases, significant tyrosine (BTBE) oxidation was seen in unsaturated PC liposomes, in a way that was largely decreased at low oxygen concentrations. Tyrosine oxidation levels paralleled those of lipid peroxidation (i.e., malondialdehyde and lipid hydroperoxides), lipid-derived radicals and BTBE phenoxyl radicals were simultaneously detected by electron spin resonance spin trapping, supporting an association between the two processes. Indeed, alpha-tocopherol, a known reactant with lipid peroxyl radicals (LOO center dot), inhibited both tyrosine oxidation and lipid peroxidation induced by all three oxidation systems. Moreover, oxidant-stimulated liposomal oxygen consumption was dose dependently inhibited by BTBE but not by its phenylalanine analogue, BPBE (N-t-BOC L-phenylalanine tert-butyl ester), providing direct evidence for the reaction between LOO center dot and the phenol moiety in BTBE, with an estimated second-order rate constant of 4.8 x 10(3) M-1 s(-1). In summary, the data presented herein demonstrate that LOO center dot mediates tyrosine oxidation processes in hydrophobic biocompartments and provide a new mechanistic insight to understand protein oxidation and nitration in lipoproteins and biomembranes.
  • 10.1021/jacs.4c05854
    作者:Mou, Zhaobiao、Zhu, Yiwei、Zhang, Lei、Ma, Mengting、Li, Zhongjing、Guo, Yiming、Zheng, Jiamei、Zhao, Zixiao、Zhang, Kaiqiang、Chen, Xiaoyuan、Li, Zijing
    DOI:10.1021/jacs.4c05854
    日期:——
    improve tracer pharmacokinetics, achieving effective leaving group-mediated nucleophilic 18F-fluorination in water (excluding 18F/19F-exchange) remains a formidable challenge. Here, we present a water-compatible SN2 leaving group-mediated 18F-fluorination method employing preconjugated “AquaF” (phosphonamidic fluorides) building blocks. Among 19 compact tetracoordinated pentavalent P(V)–F candidates,
    尽管广泛使用亲水结构单元来掺入18 F 并改善示踪剂药代动力学,但在水中实现有效的离去基团介导的亲核18 F-氟化(不包括18 F/ 19 F-交换)仍然是一个艰巨的挑战。在这里,我们提出了一种水相容的 S N 2 离去基团介导的18 F-氟化方法,该方法采用预共轭的“AquaF”(膦酰胺氟化物)构建块。在 19 个紧凑的四配位五价 P(V)–F 候选物中,“AquaF”结构单元表现出优异的水溶性、在水中足够的18 F-氟化能力以及优异的体内代谢特性。从候选离去基团池中鉴定出两个硝基吡啶醇离去基团,可进一步增强前体水溶性,能够在水中以 10 –2 M –1 s –1级反应速率常数进行18 F-氟化(超过18 F/ 19 F-交换)在室温下。随着放能协同 S N 2 18 F-氟化机制的确认,这种18 F-氟化方法实现了~90%的放射化学转化率,并在盐水中达到了 175 ± 40 GBq/μmol(使用
查看更多

同类化合物

(甲基3-(二甲基氨基)-2-苯基-2H-azirene-2-羧酸乙酯) (±)-盐酸氯吡格雷 (±)-丙酰肉碱氯化物 (d(CH2)51,Tyr(Me)2,Arg8)-血管加压素 (S)-(+)-α-氨基-4-羧基-2-甲基苯乙酸 (S)-阿拉考特盐酸盐 (S)-赖诺普利-d5钠 (S)-2-氨基-5-氧代己酸,氢溴酸盐 (S)-2-[3-[(1R,2R)-2-(二丙基氨基)环己基]硫脲基]-N-异丙基-3,3-二甲基丁酰胺 (S)-1-(4-氨基氧基乙酰胺基苄基)乙二胺四乙酸 (S)-1-[N-[3-苯基-1-[(苯基甲氧基)羰基]丙基]-L-丙氨酰基]-L-脯氨酸 (R)-乙基N-甲酰基-N-(1-苯乙基)甘氨酸 (R)-丙酰肉碱-d3氯化物 (R)-4-N-Cbz-哌嗪-2-甲酸甲酯 (R)-3-氨基-2-苄基丙酸盐酸盐 (R)-1-(3-溴-2-甲基-1-氧丙基)-L-脯氨酸 (N-[(苄氧基)羰基]丙氨酰-N〜5〜-(diaminomethylidene)鸟氨酸) (6-氯-2-吲哚基甲基)乙酰氨基丙二酸二乙酯 (4R)-N-亚硝基噻唑烷-4-羧酸 (3R)-1-噻-4-氮杂螺[4.4]壬烷-3-羧酸 (3-硝基-1H-1,2,4-三唑-1-基)乙酸乙酯 (2S,3S,5S)-2-氨基-3-羟基-1,6-二苯己烷-5-N-氨基甲酰基-L-缬氨酸 (2S,3S)-3-((S)-1-((1-(4-氟苯基)-1H-1,2,3-三唑-4-基)-甲基氨基)-1-氧-3-(噻唑-4-基)丙-2-基氨基甲酰基)-环氧乙烷-2-羧酸 (2S)-2,6-二氨基-N-[4-(5-氟-1,3-苯并噻唑-2-基)-2-甲基苯基]己酰胺二盐酸盐 (2S)-2-氨基-3-甲基-N-2-吡啶基丁酰胺 (2S)-2-氨基-3,3-二甲基-N-(苯基甲基)丁酰胺, (2S,4R)-1-((S)-2-氨基-3,3-二甲基丁酰基)-4-羟基-N-(4-(4-甲基噻唑-5-基)苄基)吡咯烷-2-甲酰胺盐酸盐 (2R,3'S)苯那普利叔丁基酯d5 (2R)-2-氨基-3,3-二甲基-N-(苯甲基)丁酰胺 (2-氯丙烯基)草酰氯 (1S,3S,5S)-2-Boc-2-氮杂双环[3.1.0]己烷-3-羧酸 (1R,4R,5S,6R)-4-氨基-2-氧杂双环[3.1.0]己烷-4,6-二羧酸 齐特巴坦 齐德巴坦钠盐 齐墩果-12-烯-28-酸,2,3-二羟基-,苯基甲基酯,(2a,3a)- 齐墩果-12-烯-28-酸,2,3-二羟基-,羧基甲基酯,(2a,3b)-(9CI) 黄酮-8-乙酸二甲氨基乙基酯 黄荧菌素 黄体生成激素释放激素 (1-5) 酰肼 黄体瑞林 麦醇溶蛋白 麦角硫因 麦芽聚糖六乙酸酯 麦根酸 麦撒奎 鹅膏氨酸 鹅膏氨酸 鸦胆子酸A甲酯 鸦胆子酸A 鸟氨酸缩合物