CO<sub>2</sub> Capture by Multivalent Amino-Functionalized Calix[4]arenes: Self-Assembly, Absorption, and QCM Detection Studies
作者:Laura Baldini、Monica Melegari、Valentina Bagnacani、Alessandro Casnati、Enrico Dalcanale、Francesco Sansone、Rocco Ungaro
DOI:10.1021/jo200650f
日期:2011.5.20
The reactivity of CO2 with polyamino substrates based on calix[4]arenes and on a difunctional, noncyclic model has been studied. All the compounds react with CO2 in chloroform to form ammonium carb innate salts. However, the number, topology, and conformational features of the amino-functionalized arms present on the multivalent scaffold have a remarkable influence on the reaction efficiency and on the product composition. Tetraaminocalix[4]arenes 1-3 rapidly and efficiently react with 2 equiv of CO2, yielding highly stable hydrogen-bonded dimers formed by the self-assembly of two bis-ammonium bis-carbamate intramolecular salts. 1,3-Diaminocalix[4]arene 4 absorbs 1 mol of CO2, affording less stable zwitterionic ammonium carbamates. Gemini compound 5 reacts with CO2 in a 1:1 stoichiometry, forming hydrogen. bonded dimers of ammonium carbamate derivatives of moderate stability. For upper rim 1,3-diaminocalix[4]arene 6, in addition to the labile intramolecular salt, the presence of a self-assembled polymer was also detected. These systems were fully characterized in solution by H-1 and C-13 NMR spectroscopy, whereas the corresponding gas-solid reactions were further investigated by QCM measurements. Interestingly, the high affinity and reversibility of CO2 uptake shown by 1,3-diamino calix[4]arene 4 enabled us to attain a promising QCM device for carbon dioxide sensing.