摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

1-(4-azidobutoxy)-4-(triphenylmethyl)benzene | 1047646-69-4

中文名称
——
中文别名
——
英文名称
1-(4-azidobutoxy)-4-(triphenylmethyl)benzene
英文别名
——
1-(4-azidobutoxy)-4-(triphenylmethyl)benzene化学式
CAS
1047646-69-4
化学式
C29H27N3O
mdl
——
分子量
433.553
InChiKey
DQEROSIHFGEAFS-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    7.54
  • 重原子数:
    33.0
  • 可旋转键数:
    10.0
  • 环数:
    4.0
  • sp3杂化的碳原子比例:
    0.17
  • 拓扑面积:
    57.99
  • 氢给体数:
    0.0
  • 氢受体数:
    2.0

反应信息

  • 作为反应物:
    描述:
    1-(4-azidobutoxy)-4-(triphenylmethyl)benzene3,6-bis(prop-2-yn-1-yloxy)-9H-xanthen-9-oneErythorbic acidcopper(II) sulfate 作用下, 以 二甲基亚砜 为溶剂, 反应 64.0h, 以79%的产率得到3,6-Bis[[1-[4-(4-tritylphenoxy)butyl]triazol-4-yl]methoxy]xanthen-9-one
    参考文献:
    名称:
    Macrocycle Breathing in [2]Rotaxanes with Tetralactam Macrocycles
    摘要:
    The structural dynamics of two pairs of [2]rotaxanes were compared using variable-temperature NMR. Each rotaxane had a surrounding tetralactam macrocycle with either 2,6-pyridine dicarboxamide or isophthalamide bridging units. Differences were observed in two types of rotational processes: spinning of the phenylene wall units in the surrounding macrocycle of squaraine rotaxanes and macrocycle pirouetting in xanthone rotaxanes. The rotaxanes with macrocycles containing 2,6-pyridine dicarboxamide bridges exhibited higher rotational barriers due to a cavity contraction effect, which disfavored macrocycle breathing.
    DOI:
    10.1021/jo1020739
  • 作为产物:
    描述:
    苯甲酸乙酯盐酸 、 sodium azide 、 potassium carbonate 作用下, 以 四氢呋喃乙醚N,N-二甲基甲酰胺乙腈 为溶剂, 反应 46.0h, 生成 1-(4-azidobutoxy)-4-(triphenylmethyl)benzene
    参考文献:
    名称:
    POSSaxanes:结合立方倍半硅氧烷塞子的有机-无机轮烷的活性模板合成
    摘要:
    利用 CuAAC 活性模板方法构建包含笼状倍半硅氧烷塞子的轮烷,即 POSSaxane。这些化合物的特征在于溶液和固态,提供了前所未有的结合 POSS 的轮烷分子结构。
    DOI:
    10.1039/d3cc01706k
点击查看最新优质反应信息

文献信息

  • Squaraine rotaxane shuttle as a ratiometric deep-red optical chloride sensor
    作者:Carleton G. Collins、Evan M. Peck、Patrick J. Kramer、Bradley D. Smith
    DOI:10.1039/c3sc50535a
    日期:——
    A new squaraine rotaxane molecular shuttle exhibits high chemical stability and acts as a deep-red, fluorescent and colorimetric sensor for Cl− anion with reversible, ratiometric response. The molecular design encapsulates a dihydroxyl substituted squaraine dye inside an anthracene-containing tetralactam macrocycle and a “clicked capping” reaction was used to convert an appropriate pseudorotaxane precursor into a permanently interlocked rotaxane in high yield. Reversible binding of Cl− to the rotaxane in solution, or on the surface of prototype dipsticks, causes lateral displacement of the surrounding macrocycle away from the central squaraine station and a substantial 30–40 nm shift in the squaraine absorption/fluorescence maxima that can be easily detected by the naked eye. The collective attributes of intense absorption/emission and ratiometric response at deep-red wavelengths is a significant advance in optical Cl− sensor performance by an organic molecule.
    一种新型的方奎宁罗塔烷分子穿梭器具有高度化学稳定性,可作为深红色荧光和色度传感器,用于检测Cl−阴离子,并具有可逆的比率响应。分子设计将二羟基取代的方奎宁染料封装在含的四内酰胺大环内,并通过“点击封端”反应将合适的伪罗塔烷前体转化为高产的永久互锁罗塔烷。Cl−在溶液中或原型试纸表面与罗塔烷的可逆结合会导致周围大环从中心方奎宁站发生横向位移,方奎宁吸收/荧光最大值发生30-40 nm的显著偏移,肉眼即可轻松检测到。深红色波长下强烈的吸收/发射和比率响应的综合属性是有机分子在光学Cl−传感器性能方面的重大进步。
  • Synthesis and Photophysical Investigation of Squaraine Rotaxanes by “Clicked Capping”
    作者:Jeremiah J. Gassensmith、Lorna Barr、Jeffrey M. Baumes、Agelina Paek、Anh Nguyen、Bradley D. Smith
    DOI:10.1021/ol801189a
    日期:2008.8.7
    Pseudorotaxane complexes of squaraine dyes and tetralactam macrocycles are converted into permanently interlocked rotaxane structures using copper-catalyzed and copper-free cycloaddition reactions with bulky stopper groups. The photophysical properties of the encapsulated squaraine depend on the structure of the macrocycle. In one case, squaraine rotaxanes are produced in near-quantitative yields and with intense near-IR fluorescence. In another case, squaraine fluorescence is greatly diminished upon macrocyclic encapsulation but the signal can be restored by dye displacement with anions.
  • Internal and External Stereoisomers of Squaraine Rotaxane Endoperoxide: Synthesis, Chemical Differences, and Structural Revision
    作者:Carleton G. Collins、Joshua M. Lee、Allen G. Oliver、Olaf Wiest、Bradley D. Smith
    DOI:10.1021/jo402564k
    日期:2014.2.7
    Photooxygenation of permanently interlocked squaraine rotaxanes with anthracene-containing macrocydes produces the corresponding squaraine rotaxane endoperoxides (SREPs) quantitatively. SREPs are stored at low temperature, and upon warming, they undergo clean cycloreversion, releasing singlet oxygen and emitting light. The structural elucidation in 2010 assigned the structure as the SREP-int stereoisomer, with the endoperoxide unit directed inside the macrocycle cavity. New experimental and computational evidence reported here proves that the initial, kinetic photooxygenation product is the less stable SREP-ext stereoisomer with the endoperoxide unit directed outside the macrocycle. The photophysical properties and subsequent reactivity of mechanically strained SREP-ext depend on the size of the end groups of the encapsulated squaraine dye. If the end groups are sufficiently large to prevent dissociation of the interlocked components, the strained SREP-ext stereoisomer undergoes clean, thermal cycloreversion. However, smaller squaraine end groups allow transient dissociation, resulting in a pseudorotaxane dissociation/association process that produces SREP-int as the thermodynamic stereoisomer that does not cyclorevert. The large difference in endoperoxide reactivity for the two SREP stereoisomers illustrates the power of the mechanical bond to induce cross-component steric strain and selective enhancement of a specific reaction pathway. The new insight enabled synthetic development of triptycene-containing squaraine rotaxanes with high fluorescence quantum yields and large Stokes shifts.
查看更多

同类化合物

(βS)-β-氨基-4-(4-羟基苯氧基)-3,5-二碘苯甲丙醇 (S,S)-邻甲苯基-DIPAMP (S)-(-)-7'-〔4(S)-(苄基)恶唑-2-基]-7-二(3,5-二-叔丁基苯基)膦基-2,2',3,3'-四氢-1,1-螺二氢茚 (S)-盐酸沙丁胺醇 (S)-3-(叔丁基)-4-(2,6-二甲氧基苯基)-2,3-二氢苯并[d][1,3]氧磷杂环戊二烯 (S)-2,2'-双[双(3,5-三氟甲基苯基)膦基]-4,4',6,6'-四甲氧基联苯 (S)-1-[3,5-双(三氟甲基)苯基]-3-[1-(二甲基氨基)-3-甲基丁烷-2-基]硫脲 (R)富马酸托特罗定 (R)-(-)-盐酸尼古地平 (R)-(-)-4,12-双(二苯基膦基)[2.2]对环芳烷(1,5环辛二烯)铑(I)四氟硼酸盐 (R)-(+)-7-双(3,5-二叔丁基苯基)膦基7''-[((6-甲基吡啶-2-基甲基)氨基]-2,2'',3,3''-四氢-1,1''-螺双茚满 (R)-(+)-7-双(3,5-二叔丁基苯基)膦基7''-[(4-叔丁基吡啶-2-基甲基)氨基]-2,2'',3,3''-四氢-1,1''-螺双茚满 (R)-(+)-7-双(3,5-二叔丁基苯基)膦基7''-[(3-甲基吡啶-2-基甲基)氨基]-2,2'',3,3''-四氢-1,1''-螺双茚满 (R)-(+)-4,7-双(3,5-二-叔丁基苯基)膦基-7“-[(吡啶-2-基甲基)氨基]-2,2”,3,3'-四氢1,1'-螺二茚满 (R)-3-(叔丁基)-4-(2,6-二苯氧基苯基)-2,3-二氢苯并[d][1,3]氧杂磷杂环戊烯 (R)-2-[((二苯基膦基)甲基]吡咯烷 (R)-1-[3,5-双(三氟甲基)苯基]-3-[1-(二甲基氨基)-3-甲基丁烷-2-基]硫脲 (N-(4-甲氧基苯基)-N-甲基-3-(1-哌啶基)丙-2-烯酰胺) (5-溴-2-羟基苯基)-4-氯苯甲酮 (5-溴-2-氯苯基)(4-羟基苯基)甲酮 (5-氧代-3-苯基-2,5-二氢-1,2,3,4-oxatriazol-3-鎓) (4S,5R)-4-甲基-5-苯基-1,2,3-氧代噻唑烷-2,2-二氧化物-3-羧酸叔丁酯 (4S,4''S)-2,2''-亚环戊基双[4,5-二氢-4-(苯甲基)恶唑] (4-溴苯基)-[2-氟-4-[6-[甲基(丙-2-烯基)氨基]己氧基]苯基]甲酮 (4-丁氧基苯甲基)三苯基溴化磷 (3aR,8aR)-(-)-4,4,8,8-四(3,5-二甲基苯基)四氢-2,2-二甲基-6-苯基-1,3-二氧戊环[4,5-e]二恶唑磷 (3aR,6aS)-5-氧代六氢环戊基[c]吡咯-2(1H)-羧酸酯 (2Z)-3-[[(4-氯苯基)氨基]-2-氰基丙烯酸乙酯 (2S,3S,5S)-5-(叔丁氧基甲酰氨基)-2-(N-5-噻唑基-甲氧羰基)氨基-1,6-二苯基-3-羟基己烷 (2S,2''S,3S,3''S)-3,3''-二叔丁基-4,4''-双(2,6-二甲氧基苯基)-2,2'',3,3''-四氢-2,2''-联苯并[d][1,3]氧杂磷杂戊环 (2S)-(-)-2-{[[[[3,5-双(氟代甲基)苯基]氨基]硫代甲基]氨基}-N-(二苯基甲基)-N,3,3-三甲基丁酰胺 (2S)-2-[[[[[((1S,2S)-2-氨基环己基]氨基]硫代甲基]氨基]-N-(二苯甲基)-N,3,3-三甲基丁酰胺 (2S)-2-[[[[[[((1R,2R)-2-氨基环己基]氨基]硫代甲基]氨基]-N-(二苯甲基)-N,3,3-三甲基丁酰胺 (2-硝基苯基)磷酸三酰胺 (2,6-二氯苯基)乙酰氯 (2,3-二甲氧基-5-甲基苯基)硼酸 (1S,2S,3S,5S)-5-叠氮基-3-(苯基甲氧基)-2-[(苯基甲氧基)甲基]环戊醇 (1S,2S,3R,5R)-2-(苄氧基)甲基-6-氧杂双环[3.1.0]己-3-醇 (1-(4-氟苯基)环丙基)甲胺盐酸盐 (1-(3-溴苯基)环丁基)甲胺盐酸盐 (1-(2-氯苯基)环丁基)甲胺盐酸盐 (1-(2-氟苯基)环丙基)甲胺盐酸盐 (1-(2,6-二氟苯基)环丙基)甲胺盐酸盐 (-)-去甲基西布曲明 龙蒿油 龙胆酸钠 龙胆酸叔丁酯 龙胆酸 龙胆紫-d6 龙胆紫