Macrocycle Breathing in [2]Rotaxanes with Tetralactam Macrocycles
摘要:
The structural dynamics of two pairs of [2]rotaxanes were compared using variable-temperature NMR. Each rotaxane had a surrounding tetralactam macrocycle with either 2,6-pyridine dicarboxamide or isophthalamide bridging units. Differences were observed in two types of rotational processes: spinning of the phenylene wall units in the surrounding macrocycle of squaraine rotaxanes and macrocycle pirouetting in xanthone rotaxanes. The rotaxanes with macrocycles containing 2,6-pyridine dicarboxamide bridges exhibited higher rotational barriers due to a cavity contraction effect, which disfavored macrocycle breathing.
Macrocycle Breathing in [2]Rotaxanes with Tetralactam Macrocycles
摘要:
The structural dynamics of two pairs of [2]rotaxanes were compared using variable-temperature NMR. Each rotaxane had a surrounding tetralactam macrocycle with either 2,6-pyridine dicarboxamide or isophthalamide bridging units. Differences were observed in two types of rotational processes: spinning of the phenylene wall units in the surrounding macrocycle of squaraine rotaxanes and macrocycle pirouetting in xanthone rotaxanes. The rotaxanes with macrocycles containing 2,6-pyridine dicarboxamide bridges exhibited higher rotational barriers due to a cavity contraction effect, which disfavored macrocycle breathing.
Macrocycle Breathing in [2]Rotaxanes with Tetralactam Macrocycles
作者:Ivan Murgu、Jeffrey M. Baumes、Jens Eberhard、Jeremiah J. Gassensmith、Easwaran Arunkumar、Bradley D. Smith
DOI:10.1021/jo1020739
日期:2011.1.21
The structural dynamics of two pairs of [2]rotaxanes were compared using variable-temperature NMR. Each rotaxane had a surrounding tetralactam macrocycle with either 2,6-pyridine dicarboxamide or isophthalamide bridging units. Differences were observed in two types of rotational processes: spinning of the phenylene wall units in the surrounding macrocycle of squaraine rotaxanes and macrocycle pirouetting in xanthone rotaxanes. The rotaxanes with macrocycles containing 2,6-pyridine dicarboxamide bridges exhibited higher rotational barriers due to a cavity contraction effect, which disfavored macrocycle breathing.