摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

2-Methoxy-N-m-tolyl-thiobenzamide | 263153-52-2

中文名称
——
中文别名
——
英文名称
2-Methoxy-N-m-tolyl-thiobenzamide
英文别名
——
2-Methoxy-N-m-tolyl-thiobenzamide化学式
CAS
263153-52-2
化学式
C15H15NOS
mdl
——
分子量
257.356
InChiKey
XTTKNMNICFYLTI-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    3.79
  • 重原子数:
    18.0
  • 可旋转键数:
    3.0
  • 环数:
    2.0
  • sp3杂化的碳原子比例:
    0.13
  • 拓扑面积:
    21.26
  • 氢给体数:
    1.0
  • 氢受体数:
    2.0

反应信息

  • 作为反应物:
    描述:
    2-Methoxy-N-m-tolyl-thiobenzamide四(三苯基膦)钯 吡啶三正丁基氢锡三氯氧磷 作用下, 以 四氢呋喃二氯甲烷 为溶剂, 反应 8.67h, 生成
    参考文献:
    名称:
    Antimicrobial effects of novel siderophores linked to β-lactam antibiotics
    摘要:
    As a strategy to increase the penetration of antibiotic drugs through the outer membrane of Gram-negative pathogens, facilitated transport through siderophore receptors has been frequently exploited. Hydroxamic acids, catechols, or very close isosteres of catechols, which are mimics of naturally occurring siderophores, have been used successfully as covalently linked escorting moieties, but a much wider diversity of iron binding motifs exists. This observation, coupled to the relative lack of specificity of siderophore receptors, prompted us to initiate a program to identify novel, noncatechol siderophoric structures. We screened over 300 compounds for their ability to (1) support growth in low iron medium of a Pseudomonas aeruginosa siderophore biosynthesis deletion mutant, or (2) compete with a bactericidal siderophore-antibiotic conjugate for siderophore receptor access. From these assays we identified a set of small molecules that fulfilled one or both of these criteria. We then synthesized these compounds with functional groups suitable for attachment to both monobactam and cephalosporin core structures. Siderophore-P-lactam conjugates then were tested against a panel of Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus strains. Although several of the resultant chimeric compounds had antimicrobial activity approaching that of ceftazidime, and most compounds demonstrated very potent activity against their cellular targets, only a single compound was obtained that had enhanced, siderophore-mediated antibacterial activity. Results with tonB mutants frequently showed increased rather than decreased susceptibilities, suggesting that multiple factors influenced the intracellular concentration of the drugs. (C) 2000 Elsevier Science Ltd. All rights reserved.
    DOI:
    10.1016/s0968-0896(99)00261-8
  • 作为产物:
    描述:
    2-甲氧基-N-(3-甲基苯基)苯甲酰胺劳森试剂 作用下, 以 甲苯 为溶剂, 反应 11.0h, 以53%的产率得到2-Methoxy-N-m-tolyl-thiobenzamide
    参考文献:
    名称:
    Antimicrobial effects of novel siderophores linked to β-lactam antibiotics
    摘要:
    As a strategy to increase the penetration of antibiotic drugs through the outer membrane of Gram-negative pathogens, facilitated transport through siderophore receptors has been frequently exploited. Hydroxamic acids, catechols, or very close isosteres of catechols, which are mimics of naturally occurring siderophores, have been used successfully as covalently linked escorting moieties, but a much wider diversity of iron binding motifs exists. This observation, coupled to the relative lack of specificity of siderophore receptors, prompted us to initiate a program to identify novel, noncatechol siderophoric structures. We screened over 300 compounds for their ability to (1) support growth in low iron medium of a Pseudomonas aeruginosa siderophore biosynthesis deletion mutant, or (2) compete with a bactericidal siderophore-antibiotic conjugate for siderophore receptor access. From these assays we identified a set of small molecules that fulfilled one or both of these criteria. We then synthesized these compounds with functional groups suitable for attachment to both monobactam and cephalosporin core structures. Siderophore-P-lactam conjugates then were tested against a panel of Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus strains. Although several of the resultant chimeric compounds had antimicrobial activity approaching that of ceftazidime, and most compounds demonstrated very potent activity against their cellular targets, only a single compound was obtained that had enhanced, siderophore-mediated antibacterial activity. Results with tonB mutants frequently showed increased rather than decreased susceptibilities, suggesting that multiple factors influenced the intracellular concentration of the drugs. (C) 2000 Elsevier Science Ltd. All rights reserved.
    DOI:
    10.1016/s0968-0896(99)00261-8
点击查看最新优质反应信息

同类化合物

(R)-3-(叔丁基)-4-(2,6-二异丙氧基苯基)-2,3-二氢苯并[d][1,3]氧杂磷杂环戊烯 (2S,3R)-3-(叔丁基)-2-(二叔丁基膦基)-4-甲氧基-2,3-二氢苯并[d][1,3]氧杂磷杂戊环 (2S,2''S,3S,3''S)-3,3''-二叔丁基-4,4''-二甲氧基-2,2'',3,3''-四氢-2,2''-联苯并[d][1,3]氧杂磷杂戊环 (2R,2''R,3R,3''R)-3,3''-二叔丁基-4,4''-二甲氧基-2,2'',3,3''-四氢-2,2''-联苯并[d][1,3]氧杂磷杂戊环 (2-氟-3-异丙氧基苯基)三氟硼酸钾 (+)-6,6'-{[(1R,3R)-1,3-二甲基-1,3基]双(氧)}双[4,8-双(叔丁基)-2,10-二甲氧基-丙二醇 麦角甾烷-6-酮,2,3,22,23-四羟基-,(2a,3a,5a,22S,23S)- 鲁前列醇 顺式6-(对甲氧基苯基)-5-己烯酸 顺式-铂戊脒碘化物 顺式-四氢-2-苯氧基-N,N,N-三甲基-2H-吡喃-3-铵碘化物 顺式-4-甲氧基苯基1-丙烯基醚 顺式-2,4,5-三甲氧基-1-丙烯基苯 顺式-1,3-二甲基-4-苯基-2-氮杂环丁酮 非那西丁杂质7 非那西丁杂质3 非那西丁杂质22 非那西丁杂质18 非那卡因 非布司他杂质37 非布司他杂质30 非布丙醇 雷诺嗪 阿达洛尔 阿达洛尔 阿莫噁酮 阿莫兰特 阿维西利 阿索卡诺 阿米维林 阿立酮 阿曲汀中间体3 阿普洛尔 阿普斯特杂质67 阿普斯特中间体 阿普斯特中间体 阿托西汀EP杂质A 阿托莫西汀杂质24 阿托莫西汀杂质10 阿托莫西汀EP杂质C 阿尼扎芬 阿利克仑中间体3 间苯胺氢氟乙酰氯 间苯二酚二缩水甘油醚 间苯二酚二异丙醇醚 间苯二酚二(2-羟乙基)醚 间苄氧基苯乙醇 间甲苯氧基乙酸肼 间甲苯氧基乙腈 间甲苯异氰酸酯