Aplyronine A, a Potent Antitumor Substance of Marine Origin, Aplyronines B and C, and Artificial Analogues: Total Synthesis and Structure−Cytotoxicity Relationships
摘要:
The enantioselective total synthesis of aplyronine A (1), a potent antitumor substance of marine origin, was achieved by a convergent-approach Three segments 4, 5, and 6, corresponding to the C5-C11, C21-C27, and C28-C34 portions of aplyronine A (1), were prepared using:the Evans aldol reaction and the Sharpless epoxidation as key steps. The coupling reaction of 4 with iodide 7 followed by julia olefination with sulfone 8 gave the C5-C20 segment 9, while the julia coupling reaction between segments 5 and 6 provided the C21-C34 segment 10. Julia olefination between segments 9 and 10 and the subsequent four-carbon homologation reaction led to seco acid 83, which was converted into aplyronine A (1) by Yamaguchi lactonization followed by the introduction of two amino acids. The use of the [(3,4-dimethoxybenzyl)oxy]methyl group as a protecting group for the hydroxyl at C29 was crucial for this synthesis. The enantioselective synthesis of two natural congeners, aplyronines B (2) acid C (3), was also carried out using the intermediates for the synthesis of 1, which determined the absolute stereostructures of 2 and 3 unambiguously. To study the structure-cytotoxicity relationships of aplyronines, artificial analogues of 1 were synthesized and their cytotoxicities were evaluated: the trimethylserine moiety, two hydroxyl groups, and the side-chain portion in 1 turned out to be important in the potent cytotoxicity shown by 1. Biological studies with aplyronine A (1) showed that 1 inhibited polymerization of G-actin to F-actin and depolymerized F-actin to G-actin.
Dinuclear Asymmetric Zn Aldol Additions: Formal Asymmetric Synthesis of Fostriecin
作者:Barry M. Trost、Mathias U. Frederiksen、Julien P. N. Papillon、Paul E. Harrington、Seunghoon Shin、Brock T. Shireman
DOI:10.1021/ja042435i
日期:2005.3.1
Direct asymmetric aldol reactions constitute a powerful methodology for the efficient synthesis of complex natural products. Herein we report the first application of our recently reported dinuclear Zn-catalyzed direct aldol addition of alkynyl ketones to aldehydes in a short and efficient formal asymmetric synthesis of fostriecin, a potent cyctotoxic natural product. This work highlights not only the power of the aldol methodology but also the utility of the akynyl silane aldol adducts, as it is subsequently utilized in a vinyl silane cross-coupling reaction which affords the target molecule in 14 steps for the longest linear sequence in 8.5% overall yield.