摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

4-[(1-金刚烷羰基)氨基]丁酸 | 35091-21-5

中文名称
4-[(1-金刚烷羰基)氨基]丁酸
中文别名
——
英文名称
adamantanylcarbonyl-GABA
英文别名
4-[(1-Adamantylcarbonyl)amino]butanoic acid;4-(adamantane-1-carbonylamino)butanoic acid
4-[(1-金刚烷羰基)氨基]丁酸化学式
CAS
35091-21-5
化学式
C15H23NO3
mdl
MFCD00194154
分子量
265.353
InChiKey
UXQXORHKKDWVER-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

物化性质

  • 沸点:
    508.2±29.0 °C(Predicted)
  • 密度:
    1.214±0.06 g/cm3(Predicted)

计算性质

  • 辛醇/水分配系数(LogP):
    2
  • 重原子数:
    19
  • 可旋转键数:
    5
  • 环数:
    3.0
  • sp3杂化的碳原子比例:
    0.866
  • 拓扑面积:
    66.4
  • 氢给体数:
    2
  • 氢受体数:
    3

安全信息

  • 海关编码:
    2924299090

SDS

SDS:d858f946c242c10c4b6355866a8bd448
查看

反应信息

  • 作为反应物:
    描述:
    4-[(1-金刚烷羰基)氨基]丁酸齐多夫定4-二甲氨基吡啶N,N'-二环己基碳二亚胺 作用下, 以 N,N-二甲基甲酰胺 为溶剂, 以83%的产率得到5'-O-{4-[(Adamantan-1-ylcarbonyl)amino]butanoyl}-3'-azido-3'-deoxythymidine
    参考文献:
    名称:
    金刚烷作为针对不良吸收药物的脑导向药物载体。2.与1-金刚烷部分缀合的AZT衍生物。
    摘要:
    合成了通过酯键与1-金刚烷部分缀合的5种AZT(叠氮胸苷)前药,以改善AZT向中枢神经系统(CNS)的转运。在用大鼠和人血浆进行的体外降解研究中,已证明前药被酶降解并定量转化为其母体药物。AZT。通过辛醇-缓冲液分配评估,前药比AZT亲脂性高得多,并且有望轻松穿透血脑屏障(BBB)。在体内研究中,将前药静脉内施用于大鼠,尽管脑脊液中前药的量可忽略不计,但在脑组织中的前药浓度却比AZT高7至18倍。这些结果表明1-金刚烷部分向AZT的引入导致BBB渗透的增强。这种药物方法对于有效治疗人免疫缺陷病毒引起的中枢神经系统感染将是有益的。
    DOI:
    10.1002/jps.2600830407
  • 作为产物:
    描述:
    1-金刚烷甲酸4-二甲氨基吡啶sodium hydroxide 作用下, 以 乙醇二氯甲烷 为溶剂, 反应 24.17h, 生成 4-[(1-金刚烷羰基)氨基]丁酸
    参考文献:
    名称:
    Optimization of Amide-Based Inhibitors of Soluble Epoxide Hydrolase with Improved Water Solubility
    摘要:
    Soluble epoxide hydrolase (sEH) plays an important role in the metabolism of endogenous chemical mediators involved in the regulation of blood pressure and inflammation. 1,3-Disubstituted ureas with a polar group located on the fifth atom from the carbonyl group of urea function are active inhibitors of sEH both in vitro and in vivo. However, their limited solubility in water and relatively high melting point lead to difficulties in formulating the compounds and poor in vivo efficacy. To improve these physical properties, the effect of structural modification of the urea pharmacophore on the inhibition potencies, water solubilities, octanol/water partition coefficients (log P), and melting points of a series of compounds was evaluated. For murine sEH, no loss of inhibition potency was observed when the urea pharmacophore was modified to an amide function, while for human sEH 2.5-fold decreased inhibition was obtained in the amide compounds. In addition, a NH group on the right side of carbonyl group of the amide pharmacophore substituted with an adamantyl group (such as compound 14) and a methylene carbon present between the adamantyl and amide groups were essential to produce potent inhibition of sEH. The resulting amide inhibitors have 10-30-fold better solubility and lower melting point than the corresponding urea compounds. These findings will facilitate synthesis of sEH inhibitors that are easier to formulate and more bioavailable.
    DOI:
    10.1021/jm0500929
点击查看最新优质反应信息

文献信息

  • GUZHOVA, S. V.;ZAJTSEV, L. M.;DANILENKO, R. I., XIMIYA FIZIOL. AKTIV. SOED., CHERNOGOLOVKA,(1989) S. 79
    作者:GUZHOVA, S. V.、ZAJTSEV, L. M.、DANILENKO, R. I.
    DOI:——
    日期:——
  • Optimization of Amide-Based Inhibitors of Soluble Epoxide Hydrolase with Improved Water Solubility
    作者:In-Hae Kim、Fenton R. Heirtzler、Christophe Morisseau、Kosuke Nishi、Hsing-Ju Tsai、Bruce D. Hammock
    DOI:10.1021/jm0500929
    日期:2005.5.1
    Soluble epoxide hydrolase (sEH) plays an important role in the metabolism of endogenous chemical mediators involved in the regulation of blood pressure and inflammation. 1,3-Disubstituted ureas with a polar group located on the fifth atom from the carbonyl group of urea function are active inhibitors of sEH both in vitro and in vivo. However, their limited solubility in water and relatively high melting point lead to difficulties in formulating the compounds and poor in vivo efficacy. To improve these physical properties, the effect of structural modification of the urea pharmacophore on the inhibition potencies, water solubilities, octanol/water partition coefficients (log P), and melting points of a series of compounds was evaluated. For murine sEH, no loss of inhibition potency was observed when the urea pharmacophore was modified to an amide function, while for human sEH 2.5-fold decreased inhibition was obtained in the amide compounds. In addition, a NH group on the right side of carbonyl group of the amide pharmacophore substituted with an adamantyl group (such as compound 14) and a methylene carbon present between the adamantyl and amide groups were essential to produce potent inhibition of sEH. The resulting amide inhibitors have 10-30-fold better solubility and lower melting point than the corresponding urea compounds. These findings will facilitate synthesis of sEH inhibitors that are easier to formulate and more bioavailable.
  • Adamantane as a Brain-Directed Drug Carrier for Poorly Absorbed Drug. 2. AZT Derivatives Conjugated with the 1-Adamantane Moiety
    作者:Noriko Tsuzuki、Teruo Hama、Mitsuhiro Kawada、Akihiro Hasui、Ryoji Konishi、Satoshi Shiwa、Yoshihito Ochi、Shiroh Futaki、Kouki Kitagawa
    DOI:10.1002/jps.2600830407
    日期:1994.4
    Five AZT (azidothymidine) prodrugs conjugated with the 1-adamantane moiety via an ester bond were synthesized to improve the transport of AZT into the central nervous system (CNS). In in vitro degradation studies with rat and human plasma, it was demonstrated that the prodrugs were degraded enzymatically and converted quantitatively to their parent drug. AZT. As assessed by octanol-buffer partitioning
    合成了通过酯键与1-金刚烷部分缀合的5种AZT(叠氮胸苷)前药,以改善AZT向中枢神经系统(CNS)的转运。在用大鼠和人血浆进行的体外降解研究中,已证明前药被酶降解并定量转化为其母体药物。AZT。通过辛醇-缓冲液分配评估,前药比AZT亲脂性高得多,并且有望轻松穿透血脑屏障(BBB)。在体内研究中,将前药静脉内施用于大鼠,尽管脑脊液中前药的量可忽略不计,但在脑组织中的前药浓度却比AZT高7至18倍。这些结果表明1-金刚烷部分向AZT的引入导致BBB渗透的增强。这种药物方法对于有效治疗人免疫缺陷病毒引起的中枢神经系统感染将是有益的。
查看更多

同类化合物

(甲基3-(二甲基氨基)-2-苯基-2H-azirene-2-羧酸乙酯) (±)-盐酸氯吡格雷 (±)-丙酰肉碱氯化物 (d(CH2)51,Tyr(Me)2,Arg8)-血管加压素 (S)-(+)-α-氨基-4-羧基-2-甲基苯乙酸 (S)-阿拉考特盐酸盐 (S)-赖诺普利-d5钠 (S)-2-氨基-5-氧代己酸,氢溴酸盐 (S)-2-[3-[(1R,2R)-2-(二丙基氨基)环己基]硫脲基]-N-异丙基-3,3-二甲基丁酰胺 (S)-1-(4-氨基氧基乙酰胺基苄基)乙二胺四乙酸 (S)-1-[N-[3-苯基-1-[(苯基甲氧基)羰基]丙基]-L-丙氨酰基]-L-脯氨酸 (R)-乙基N-甲酰基-N-(1-苯乙基)甘氨酸 (R)-丙酰肉碱-d3氯化物 (R)-4-N-Cbz-哌嗪-2-甲酸甲酯 (R)-3-氨基-2-苄基丙酸盐酸盐 (R)-1-(3-溴-2-甲基-1-氧丙基)-L-脯氨酸 (N-[(苄氧基)羰基]丙氨酰-N〜5〜-(diaminomethylidene)鸟氨酸) (6-氯-2-吲哚基甲基)乙酰氨基丙二酸二乙酯 (4R)-N-亚硝基噻唑烷-4-羧酸 (3R)-1-噻-4-氮杂螺[4.4]壬烷-3-羧酸 (3-硝基-1H-1,2,4-三唑-1-基)乙酸乙酯 (2S,3S,5S)-2-氨基-3-羟基-1,6-二苯己烷-5-N-氨基甲酰基-L-缬氨酸 (2S,3S)-3-((S)-1-((1-(4-氟苯基)-1H-1,2,3-三唑-4-基)-甲基氨基)-1-氧-3-(噻唑-4-基)丙-2-基氨基甲酰基)-环氧乙烷-2-羧酸 (2S)-2,6-二氨基-N-[4-(5-氟-1,3-苯并噻唑-2-基)-2-甲基苯基]己酰胺二盐酸盐 (2S)-2-氨基-3-甲基-N-2-吡啶基丁酰胺 (2S)-2-氨基-3,3-二甲基-N-(苯基甲基)丁酰胺, (2S,4R)-1-((S)-2-氨基-3,3-二甲基丁酰基)-4-羟基-N-(4-(4-甲基噻唑-5-基)苄基)吡咯烷-2-甲酰胺盐酸盐 (2R,3'S)苯那普利叔丁基酯d5 (2R)-2-氨基-3,3-二甲基-N-(苯甲基)丁酰胺 (2-氯丙烯基)草酰氯 (1S,3S,5S)-2-Boc-2-氮杂双环[3.1.0]己烷-3-羧酸 (1R,4R,5S,6R)-4-氨基-2-氧杂双环[3.1.0]己烷-4,6-二羧酸 齐特巴坦 齐德巴坦钠盐 齐墩果-12-烯-28-酸,2,3-二羟基-,苯基甲基酯,(2a,3a)- 齐墩果-12-烯-28-酸,2,3-二羟基-,羧基甲基酯,(2a,3b)-(9CI) 黄酮-8-乙酸二甲氨基乙基酯 黄荧菌素 黄体生成激素释放激素 (1-5) 酰肼 黄体瑞林 麦醇溶蛋白 麦角硫因 麦芽聚糖六乙酸酯 麦根酸 麦撒奎 鹅膏氨酸 鹅膏氨酸 鸦胆子酸A甲酯 鸦胆子酸A 鸟氨酸缩合物