Identification of GZD824 as an Orally Bioavailable Inhibitor That Targets Phosphorylated and Nonphosphorylated Breakpoint Cluster Region–Abelson (Bcr-Abl) Kinase and Overcomes Clinically Acquired Mutation-Induced Resistance against Imatinib
作者:Xiaomei Ren、Xiaofen Pan、Zhang Zhang、Deping Wang、Xiaoyun Lu、Yupeng Li、Donghai Wen、Huoyou Long、Jinfeng Luo、Yubing Feng、Xiaoxi Zhuang、Fengxiang Zhang、Jianqi Liu、Fang Leng、Xingfen Lang、Yang Bai、Miaoqin She、Zhengchao Tu、Jingxuan Pan、Ke Ding
DOI:10.1021/jm301581y
日期:2013.2.14
Bcr-Abl(T315)I mutation-induced imatinib resistance remains a major challenge for clinical management of chronic myelogenous leukemia (CML). Herein, we report GZD824 (10a) as a novel orally bioavailable inhibitor against a broad spectrum of Bcr-Abl mutants including T315I. It tightly bound to Bcr-Abl(WT) and Bcr-Abl(T315I) with K-d values of 0.32 and 0.71 nM, respectively, and strongly inhibited the kinase functions with nanomolar IC50 values. The compound potently suppressed proliferation of Bcr-Abl-positive K562 and Ku812 human CML cells with IC50 values of 0.2 and 0.13 nM, respectively. It also displayed good oral bioavailability (48.7%), a reasonable half-life (10.6 h), and promising in vivo antitumor efficacy. It induced tumor regression in mouse xenograft tumor models driven by Bcr-Abl(WT) or the mutants and significantly improved the survival of mice bearing an allograft leukemia model with Ba/F3 cells harboring Bcr-Abl(T315I). GZD824 represents a promising lead candidate for development of Bcr-Abl inhibitors to overcome acquired imatinib resistance.