Chemical and Biological Evaluation of Dipeptidyl Boronic Acid Proteasome Inhibitors for Use in Prodrugs and Pro-Soft Drugs Targeting Solid Tumors
摘要:
Bortezomib, a dipeptidyl boronic acid and potent inhibitor of the 26S proteasome, is remarkably effective against multiple myeloma (MM) but not against solid tumors. Dose-limiting adverse effects from "on target" inhibition of the proteasome in normal cells and tissues appear to be a key obstacle. Achieving efficacy against solid tumors therefore is likely to require making the inhibitor more selective for tumor tissue over normal tissues. The simplest strategy that might provide such tissue specificity would be to employ a tumor specific protease to release an inhibitor from a larger, noninhibitory structure. However, such release would necessarily generate an inhibitor with a free N-terminal amino group, raising a key question: Can short peptide boronic acids with N-terminal amino groups have the requisite properties to serve as warheads in prodrugs? Here we show that dipeptides of boroLeu, the smallest plausible candidates for the task, can indeed be sufficiently potent, cell-penetrating, cytotoxic, and stable to degradation by cellular peptidases to serve in this capacity.
Chemical and Biological Evaluation of Dipeptidyl Boronic Acid Proteasome Inhibitors for Use in Prodrugs and Pro-Soft Drugs Targeting Solid Tumors
摘要:
Bortezomib, a dipeptidyl boronic acid and potent inhibitor of the 26S proteasome, is remarkably effective against multiple myeloma (MM) but not against solid tumors. Dose-limiting adverse effects from "on target" inhibition of the proteasome in normal cells and tissues appear to be a key obstacle. Achieving efficacy against solid tumors therefore is likely to require making the inhibitor more selective for tumor tissue over normal tissues. The simplest strategy that might provide such tissue specificity would be to employ a tumor specific protease to release an inhibitor from a larger, noninhibitory structure. However, such release would necessarily generate an inhibitor with a free N-terminal amino group, raising a key question: Can short peptide boronic acids with N-terminal amino groups have the requisite properties to serve as warheads in prodrugs? Here we show that dipeptides of boroLeu, the smallest plausible candidates for the task, can indeed be sufficiently potent, cell-penetrating, cytotoxic, and stable to degradation by cellular peptidases to serve in this capacity.
Amide Synthesis by Nickel/Photoredox‐Catalyzed Direct Carbamoylation of (Hetero)Aryl Bromides
作者:Nurtalya Alandini、Luca Buzzetti、Gianfranco Favi、Tim Schulte、Lisa Candish、Karl D. Collins、Paolo Melchiorre
DOI:10.1002/anie.202000224
日期:2020.3.23
Herein, we report a one‐electron strategy for catalytic amide synthesis that enables the direct carbamoylation of (hetero)aryl bromides. This radical cross‐coupling approach, which is based on the combination of nickel and photoredox catalysis, proceeds at ambient temperature and uses readily available dihydropyridines as precursors of carbamoyl radicals. The method's mild reaction conditions make
Various primary and secondary amines, including amino acid methyl esters, were used as nucleophiles in palladium-catalysed aminocarbonylation of 2-iodopyridine, 3-iodopyridine and iodopyrazine. N-Substituted nicotinamides and 3-pyridyl-glyoxylamides (2-oxo-carboxamide type derivatives) of potential biological importance can be obtained from 3-iodopyridine as a result of simple and double carbon monoxide
TRIPETIDE BORONIC ACID OR BORONIC ESTER, PREPARATIVE METHOD AND USE THEREOF
申请人:Li Runtao
公开号:US20120135921A1
公开(公告)日:2012-05-31
The present invention discloses proteasome inhibitors of tripeptide boronic acids or boronic esters represented by Formula (I), preparative method and use thereof. The proteasome inhibitors are therapeutical agents for treating malignant tumor, various nervous system degenerative diseases, muscle cachexia or diabetes, wherein the malignant tumor is leukemia, gastric cancer, hepatocarcinoma or nasopharyngeal carcinoma.