摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

1-((trimethylsilyl)ethynyl)-4-ethynylcubane | 163332-98-7

中文名称
——
中文别名
——
英文名称
1-((trimethylsilyl)ethynyl)-4-ethynylcubane
英文别名
2-(4-Ethynylcuban-1-yl)ethynyl-trimethylsilane
1-((trimethylsilyl)ethynyl)-4-ethynylcubane化学式
CAS
163332-98-7
化学式
C15H16Si
mdl
——
分子量
224.378
InChiKey
LEHYICCIAPTHPS-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    2.24
  • 重原子数:
    16
  • 可旋转键数:
    3
  • 环数:
    6.0
  • sp3杂化的碳原子比例:
    0.73
  • 拓扑面积:
    0
  • 氢给体数:
    0
  • 氢受体数:
    0

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    描述:
    1-((trimethylsilyl)ethynyl)-4-ethynylcubane吡啶氧气1,8-二氮杂双环[5.4.0]十一碳-7-烯 、 copper(I) bromide 作用下, 以87%的产率得到1,4-bis((trimethylsilyl)ethynyl)cubyl-1,3-butadiyne
    参考文献:
    名称:
    Alkynylcubanes as Precursors of Rigid-Rod Molecules and Alkynylcyclooctatetraenes
    摘要:
    We have developed new methodology for the synthesis of alkynylcubanes and have used these compounds to make rigid-rod molecules constructed of cubane and acetylene subunits. Terminal and substituted alkynylcubanes 7a, 7b, 8a, 8b, 12a, and 12b were synthesized by n-BuLi-promoted elimination of halogen from 1,1-dibromovinylcubanes 6a, 6b, and 11, followed by quenching with electrophiles. Systems with one or two acetylenic units between two cubanes were also prepared: dicubylacetylene (15) was obtained via reaction of the lithium ylide of (trimethylsilyl)diazomethane with dicubyl ketone (14); 1,4-dicubyl-1,3-butadiyne (16) was made by oxidative dimerization of ethynylcubane (7a). Dimerizations and cross-coupling reactions of various 1,4-diethynylcubanes afforded longer rods, e.g., 1,4-bis-((trimethylsilyl)ethynyl)cubyl- 1,3-butadiyne (18) and 1-(4-((trimethylsilyl)ethynyl)cubyl)-4-cubyl-1,3-butadiyne (21). Rh(I)-promoted ring opening of the cubane subunit(s) of these compounds into the corresponding tricyclooctadiene followed by thermal rearrangement to the cyclooctatetraene was used to convert 7a, 8a, and 12a into the mono- and disubstituted alkynylcyclooctatetraenes 22a, 22b, and 23 and to take 15 and 16 into the alkynyl-bridged cyclooctatetraenes 24a and 24b, respectively. X-ray crystallographic analysis of 12a, 15, 16, and 18 revealed interesting details about their structures.
    DOI:
    10.1021/ja00096a016
  • 作为产物:
    描述:
    1,4-双(羟甲基)立方烷盐酸正丁基锂草酰氯 、 methyllithium lithium bromide 、 二甲基亚砜三乙胺三苯基膦 作用下, 以 四氢呋喃乙醚 为溶剂, 反应 4.41h, 生成 1-((trimethylsilyl)ethynyl)-4-ethynylcubane
    参考文献:
    名称:
    Alkynylcubanes as Precursors of Rigid-Rod Molecules and Alkynylcyclooctatetraenes
    摘要:
    We have developed new methodology for the synthesis of alkynylcubanes and have used these compounds to make rigid-rod molecules constructed of cubane and acetylene subunits. Terminal and substituted alkynylcubanes 7a, 7b, 8a, 8b, 12a, and 12b were synthesized by n-BuLi-promoted elimination of halogen from 1,1-dibromovinylcubanes 6a, 6b, and 11, followed by quenching with electrophiles. Systems with one or two acetylenic units between two cubanes were also prepared: dicubylacetylene (15) was obtained via reaction of the lithium ylide of (trimethylsilyl)diazomethane with dicubyl ketone (14); 1,4-dicubyl-1,3-butadiyne (16) was made by oxidative dimerization of ethynylcubane (7a). Dimerizations and cross-coupling reactions of various 1,4-diethynylcubanes afforded longer rods, e.g., 1,4-bis-((trimethylsilyl)ethynyl)cubyl- 1,3-butadiyne (18) and 1-(4-((trimethylsilyl)ethynyl)cubyl)-4-cubyl-1,3-butadiyne (21). Rh(I)-promoted ring opening of the cubane subunit(s) of these compounds into the corresponding tricyclooctadiene followed by thermal rearrangement to the cyclooctatetraene was used to convert 7a, 8a, and 12a into the mono- and disubstituted alkynylcyclooctatetraenes 22a, 22b, and 23 and to take 15 and 16 into the alkynyl-bridged cyclooctatetraenes 24a and 24b, respectively. X-ray crystallographic analysis of 12a, 15, 16, and 18 revealed interesting details about their structures.
    DOI:
    10.1021/ja00096a016
点击查看最新优质反应信息

文献信息

  • OrthoFRET in Diamantane FRET in Orthogonal Stiff Dyads; Diamond Restriction for Frozen Vibrations
    作者:Heinz Langhals、Christian Dietl、Jeremy Dahl、Robert Carlson、Yaw-Terng Chern、Peter Mayer
    DOI:10.1021/acs.joc.0c01184
    日期:2020.9.4
    Energy transfer proceeds in orthogonal dyads in contrast to Förster’s theory and cannot be prohibited even by rigid interconnecting cage compounds such as cubane or diamantane.
    与福斯特(Förster)的理论相反,能量传递以正交的方式进行,即使刚性连接的笼状化合物(如古巴或金刚烷)也不能阻止能量传递。
  • Cubane Cross-Coupling and Cubane-Porphyrin Arrays
    作者:Stefan S. R. Bernhard、Gemma M. Locke、Shane Plunkett、Alina Meindl、Keith J. Flanagan、Mathias O. Senge
    DOI:10.1002/chem.201704344
    日期:2018.1.24
    Herein, an improved methodology for aryl‐cubane cross‐coupling is reported. The peculiarities of the cubane core and its behavior during cross‐coupling conditions were analyzed, while the versatility of this adapted Baran cross‐coupling methodology was demonstrated by the synthesis of various aryl‐cubane systems, including coupling products of cubanes and porphyrins. Furthermore, arm extension of alkynyl‐cubanes
    本文报道了一种改进的芳基-古巴交叉偶联方法。分析了古巴核的特殊性及其在交叉耦合条件下的行为,同时通过各种芳基-古巴体系的合成,包括古巴和卟啉的偶联产物,证明了这种适应性的Baran交叉耦合方法的多功能性。此外,还展示了Sonogashira反应对炔基-古巴酮的臂延伸,这显示了在催化剂存在下,古巴尼核心的稳定性的第一个证据。
  • Eaton Philip E., Galoppini Elena, Gilardi Richard, J. Amer. Chem. Soc, 116 (1994) N 17, S 7588-7596
    作者:Eaton Philip E., Galoppini Elena, Gilardi Richard
    DOI:——
    日期:——
查看更多

同类化合物

()-2-(5-甲基-2-氧代苯并呋喃-3(2)-亚乙基)乙酸乙酯 (双(2,2,2-三氯乙基)) (乙基N-(1H-吲唑-3-基羰基)ethanehydrazonoate) (Z)-3-[[[2,4-二甲基-3-(乙氧羰基)吡咯-5-基]亚甲基]吲哚-2--2- (S)-(-)-5'-苄氧基苯基卡维地洛 (S)-(-)-2-(α-(叔丁基)甲胺)-1H-苯并咪唑 (S)-(-)-2-(α-甲基甲胺)-1H-苯并咪唑 (S)-氨氯地平-d4 (S)-8-氟苯并二氢吡喃-4-胺 (S)-4-(叔丁基)-2-(喹啉-2-基)-4,5-二氢噁唑 (S)-4-氯-1,2-环氧丁烷 (S)-3-(2-(二氟甲基)吡啶-4-基)-7-氟-3-(3-(嘧啶-5-基)苯基)-3H-异吲哚-1-胺 (S)-2-(环丁基氨基)-N-(3-(3,4-二氢异喹啉-2(1H)-基)-2-羟丙基)异烟酰胺 (SP-4-1)-二氯双(喹啉)-钯 (SP-4-1)-二氯双(1-苯基-1H-咪唑-κN3)-钯 (R,S)-可替宁N-氧化物-甲基-d3 (R,S)-六氢-3H-1,2,3-苯并噻唑-2,2-二氧化物-3-羧酸叔丁酯 (R)-(+)-5'-苄氧基卡维地洛 (R)-(+)-2,2'',6,6''-四甲氧基-4,4''-双(二苯基膦基)-3,3''-联吡啶(1,5-环辛二烯)铑(I)四氟硼酸盐 (R)-卡洛芬 (R)-N'-亚硝基尼古丁 (R)-DRF053二盐酸盐 (R)-4-异丙基-2-恶唑烷硫酮 (R)-3-甲基哌啶盐酸盐; (R)-2-苄基哌啶-1-羧酸叔丁酯 (N-(Boc)-2-吲哚基)二甲基硅烷醇钠 (N-{4-[(6-溴-2-氧代-1,3-苯并恶唑-3(2H)-基)磺酰基]苯基}乙酰胺) (E)-2-氰基-3-(5-(2-辛基-7-(4-(对甲苯基)-1,2,3,3a,4,8b-六氢环戊[b]吲哚-7-基)-2H-苯并[d][1,2,3]三唑-4-基)噻吩-2-基)丙烯酸 (E)-2-氰基-3-[5-(2,5-二氯苯基)呋喃-2-基]-N-喹啉-8-基丙-2-烯酰胺 (8α,9S)-(+)-9-氨基-七氢呋喃-6''-醇,值90% (6R,7R)-7-苯基乙酰胺基-3-[(Z)-2-(4-甲基噻唑-5-基)乙烯基]-3-头孢唑啉-4-羧酸二苯甲基酯 (6-羟基嘧啶-4-基)乙酸 (6,7-二甲氧基-4-(3,4,5-三甲氧基苯基)喹啉) (6,6-二甲基-3-(甲硫基)-1,6-二氢-1,2,4-三嗪-5(2H)-硫酮) (5aS,6R,9S,9aR)-5a,6,7,8,9,9a-六氢-6,11,11-三甲基-2-(2,3,4,5,6-五氟苯基)-6,9-甲基-4H-[1,2,4]三唑[3,4-c][1,4]苯并恶嗪四氟硼酸酯 (5R,Z)-3-(羟基((1R,2S,6S,8aS)-1,3,6-三甲基-2-((E)-prop-1-en-1-yl)-1,2,4a,5,6,7,8,8a-八氢萘-1-基)亚甲基)-5-(羟甲基)-1-甲基吡咯烷-2,4-二酮 (5E)-5-[(2,5-二甲基-1-吡啶-3-基-吡咯-3-基)亚甲基]-2-亚磺酰基-1,3-噻唑烷-4-酮 (5-(4-乙氧基-3-甲基苄基)-1,3-苯并二恶茂) (5-溴-3-吡啶基)[4-(1-吡咯烷基)-1-哌啶基]甲酮 (5-氯-2,1,3-苯并噻二唑-4-基)-氨基甲氨基硫代甲酸甲酯一氢碘 (5-氨基-6-氰基-7-甲基[1,2]噻唑并[4,5-b]吡啶-3-甲酰胺) (5-氨基-1,3,4-噻二唑-2-基)甲醇 (4aS-反式)-八氢-1H-吡咯并[3,4-b]吡啶 (4aS,9bR)-6-溴-2,3,4,4a,5,9b-六氢-1H-吡啶并[4,3-B]吲哚 (4S,4''S)-2,2''-环亚丙基双[4-叔丁基-4,5-二氢恶唑] (4-(4-氯苯基)硫代)-10-甲基-7H-benzimidazo(2,1-A)奔驰(德)isoquinolin-7一 (4-苄基-2-甲基-4-nitrodecahydropyrido〔1,2-a][1,4]二氮杂) (4-甲基环戊-1-烯-1-基)(吗啉-4-基)甲酮 (4-己基-2-甲基-4-nitrodecahydropyrido〔1,2-a][1,4]二氮杂) (4,5-二甲氧基-1,2,3,6-四氢哒嗪)