摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

4-methyl-1,5-diphenyl-N-(1-piperidinyl)-1H-pyrazole-3-carboxamide | 1428261-53-3

中文名称
——
中文别名
——
英文名称
4-methyl-1,5-diphenyl-N-(1-piperidinyl)-1H-pyrazole-3-carboxamide
英文别名
4-methyl-1,5-diphenyl-N-piperidin-1-ylpyrazole-3-carboxamide
4-methyl-1,5-diphenyl-N-(1-piperidinyl)-1H-pyrazole-3-carboxamide化学式
CAS
1428261-53-3
化学式
C22H24N4O
mdl
——
分子量
360.459
InChiKey
ATDCKTKMKBPZFF-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    4.6
  • 重原子数:
    27
  • 可旋转键数:
    4
  • 环数:
    4.0
  • sp3杂化的碳原子比例:
    0.27
  • 拓扑面积:
    50.2
  • 氢给体数:
    1
  • 氢受体数:
    3

上下游信息

  • 上游原料
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为产物:
    参考文献:
    名称:
    Synthesis, hypoglycemic activity and molecular modeling studies of pyrazole-3-carbohydrazides designed by a CoMFA model
    摘要:
    Diabetes and obesity are two universal health problems that constitute a research objective of several groups due to the lack of efficient and safe drug treatment. In this sense, cannabinoid receptor 1 (CBI) has attracted interest because of its role in food intake and metabolic balance, two targets in the control of metabolic syndrome. In this work, novel 1,5-diaryl pyrazole derivatives were synthesized in accordance with the pKi prediction of a previously reported CoMFA model by our group. To further investigate the biological activity of these compounds in metabolic disorders, their hypoglycemic activity in an in vivo model was tested. Interestingly, a high degree of correlation was observed between the predicted pK(i) and hypoglycemic effect 7 h after administration. Compounds 4, 9 and 13 showed the most significant plasma glucose reduction with decreases of 60%, 64% and 60% respectively. This result not only surpasses the activity of the lead rimonabant, but also that of the reference drug glibenclamide. Moreover, PASS prediction and molecular docking in an excellent validated homology model of CBI suggest that these compounds would probably act as CBI antagonists/inverse agonists and therefore, antiobesity agents. The ligand receptor complexes demonstrate that 1,5-diaryl pyrazole derivatives bind to the proposed binding site where a hydrophobic moiety interacts with the phenyl rings in the pyrazole nucleus and Lys192 forms a hydrogen bond with the oxygen of the carbonyl group. Dynamics simulations were also carried out to study the stability of the ligand receptor complexes where the most active compounds showed smaller Delta G values and more hydrogen bonds throughout the simulation. These compounds are considered useful leads for further optimization in the treatment of such metabolic illnesses. (C) 2013 Elsevier Masson SAS. All rights reserved.
    DOI:
    10.1016/j.ejmech.2013.07.054
点击查看最新优质反应信息

文献信息

  • Novel antiobesity agents: Synthesis and pharmacological evaluation of analogues of Rimonabant and of LH21
    作者:Mario Alvarado、Juan Decara、María Jesús Luque、Laura Hernandez-Folgado、María Gómez-Cañas、María Gómez-Ruiz、Javier Fernández-Ruiz、José Elguero、Nadine Jagerovic、Antonia Serrano、Pilar Goya、Fernando Rodríguez de Fonseca
    DOI:10.1016/j.bmc.2013.01.055
    日期:2013.4
    Searching for novel antiobesity agents, a series of cannabinoid LH21 and of Rimonabant-fatty acid amide analogues have been prepared. Synthesis of pyrazoles 2a–2c was achieved by a two steps simple methodology via α,β-unsaturated ketones. Carboxamides 8a–8h were obtained in good yields from esters 7a–7c by a one-pot procedure which takes place under mild conditions. New compounds have been evaluated in
    为了寻找新型的抗肥胖药,已经制备了一系列大麻素LH21和利莫那班-脂肪酸酰胺类似物。吡唑2a – 2c的合成是通过两步简单的方法,通过α,β-不饱和酮实现的。通过在温和条件下进行的一锅法操作,从酯7a - 7c中以高收率获得了羧酰胺8a - 8h。已经在体内评估了新化合物作为厌食药的作用。他们中的一些人表现出令人感兴趣的特性,其通过不涉及内源性大麻素系统的机制减少了大鼠的食物摄入。
  • Synthesis, hypoglycemic activity and molecular modeling studies of pyrazole-3-carbohydrazides designed by a CoMFA model
    作者:Eduardo Hernández-Vázquez、Rodrigo Aguayo-Ortiz、Juan José Ramírez-Espinosa、Samuel Estrada-Soto、Francisco Hernández-Luis
    DOI:10.1016/j.ejmech.2013.07.054
    日期:2013.11
    Diabetes and obesity are two universal health problems that constitute a research objective of several groups due to the lack of efficient and safe drug treatment. In this sense, cannabinoid receptor 1 (CBI) has attracted interest because of its role in food intake and metabolic balance, two targets in the control of metabolic syndrome. In this work, novel 1,5-diaryl pyrazole derivatives were synthesized in accordance with the pKi prediction of a previously reported CoMFA model by our group. To further investigate the biological activity of these compounds in metabolic disorders, their hypoglycemic activity in an in vivo model was tested. Interestingly, a high degree of correlation was observed between the predicted pK(i) and hypoglycemic effect 7 h after administration. Compounds 4, 9 and 13 showed the most significant plasma glucose reduction with decreases of 60%, 64% and 60% respectively. This result not only surpasses the activity of the lead rimonabant, but also that of the reference drug glibenclamide. Moreover, PASS prediction and molecular docking in an excellent validated homology model of CBI suggest that these compounds would probably act as CBI antagonists/inverse agonists and therefore, antiobesity agents. The ligand receptor complexes demonstrate that 1,5-diaryl pyrazole derivatives bind to the proposed binding site where a hydrophobic moiety interacts with the phenyl rings in the pyrazole nucleus and Lys192 forms a hydrogen bond with the oxygen of the carbonyl group. Dynamics simulations were also carried out to study the stability of the ligand receptor complexes where the most active compounds showed smaller Delta G values and more hydrogen bonds throughout the simulation. These compounds are considered useful leads for further optimization in the treatment of such metabolic illnesses. (C) 2013 Elsevier Masson SAS. All rights reserved.
查看更多

同类化合物

伊莫拉明 (5aS,6R,9S,9aR)-5a,6,7,8,9,9a-六氢-6,11,11-三甲基-2-(2,3,4,5,6-五氟苯基)-6,9-甲基-4H-[1,2,4]三唑[3,4-c][1,4]苯并恶嗪四氟硼酸酯 (5-氨基-1,3,4-噻二唑-2-基)甲醇 齐墩果-2,12-二烯[2,3-d]异恶唑-28-酸 黄曲霉毒素H1 高效液相卡套柱 非昔硝唑 非布索坦杂质Z19 非布索坦杂质T 非布索坦杂质K 非布索坦杂质E 非布索坦杂质67 非布索坦杂质65 非布索坦杂质64 非布索坦杂质61 非布索坦代谢物67M-4 非布索坦代谢物67M-2 非布索坦代谢物 67M-1 非布索坦-D9 非布索坦 非唑拉明 雷西纳德杂质H 雷西纳德 阿西司特 阿莫奈韦 阿米苯唑 阿米特罗13C2,15N2 阿瑞匹坦杂质 阿格列扎 阿扎司特 阿尔吡登 阿塔鲁伦中间体 阿培利司N-1 阿哌沙班杂质26 阿哌沙班杂质15 阿可替尼 阿作莫兰 阿佐塞米 镁(2+)(Z)-4'-羟基-3'-甲氧基肉桂酸酯 锌1,2-二甲基咪唑二氯化物 铵2-(4-氯苯基)苯并恶唑-5-丙酸盐 铬酸钠[-氯-3-[(5-二氢-3-甲基-5-氧代-1-苯基-1H-吡唑-4-基)偶氮]-2-羟基苯磺酸基][4-[(3,5-二氯-2-羟基苯 铁(2+)乙二酸酯-3-甲氧基苯胺(1:1:2) 钠5-苯基-4,5-二氢吡唑-1-羧酸酯 钠3-[2-(2-壬基-4,5-二氢-1H-咪唑-1-基)乙氧基]丙酸酯 钠3-(2H-苯并三唑-2-基)-5-仲-丁基-4-羟基苯磺酸酯 钠(2R,4aR,6R,7R,7aS)-6-(2-溴-9-氧代-6-苯基-4,9-二氢-3H-咪唑并[1,2-a]嘌呤-3-基)-7-羟基四氢-4H-呋喃并[3,2-D][1,3,2]二氧杂环己膦烷e-2-硫醇2-氧化物 野麦枯 野燕枯 醋甲唑胺