摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

2-bromo-2,5-dihydrothiophene-1,1-dioxide | 30129-88-5

中文名称
——
中文别名
——
英文名称
2-bromo-2,5-dihydrothiophene-1,1-dioxide
英文别名
2-Brom-3,4-dehydrosulfolan;Bromo-sulpholene;2-bromo-2,5-dihydrothiophene 1,1-dioxide
2-bromo-2,5-dihydrothiophene-1,1-dioxide化学式
CAS
30129-88-5
化学式
C4H5BrO2S
mdl
——
分子量
197.052
InChiKey
IRESEMZBLLCRDB-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    0.7
  • 重原子数:
    8
  • 可旋转键数:
    0
  • 环数:
    1.0
  • sp3杂化的碳原子比例:
    0.5
  • 拓扑面积:
    42.5
  • 氢给体数:
    0
  • 氢受体数:
    2

反应信息

  • 作为反应物:
    描述:
    2-bromo-2,5-dihydrothiophene-1,1-dioxide 在 palladium on activated charcoal 氢气 作用下, 以 甲醇 为溶剂, 25.0 ℃ 、3.0 MPa 条件下, 反应 12.0h, 以25%的产率得到2-bromosulfolane
    参考文献:
    名称:
    Competition between Hetero-Diels−Alder and Cheletropic Addition of Sulfur Dioxide. Theoretical and Experimental Substituent Effects on the Relative Stability of 3,6-Dihydro-1,2-oxathiin-2-oxides (Sultines) and 2,5-Dihydrothiophene-1,1-dioxides (Sulfolenes). Anomeric Effects in Sultine and 6-Substituted Derivatives
    摘要:
    At low temperature and in the presence of CF3COOH, SO2 undergoes Diels-Alder additions with (E)-1-acetoxybutadiene (8d) giving a 1:10 mixture of diastereomeric 6-acetoxysultines (9d + 10d). The Van't Hoff plot for equilibria 8d + SO2 reversible arrow 9d + 10d led to Delta H-r = -7.0 +/- 0.3 kcal/mol, Delta S-r = -42 +/- 3 cal . mol(-1) . K-1. At 20 degrees C, 8d underwent a slow cheletropic addition with SO2 giving 2-acetoxysulfolene (11d, Delta Hr congruent to -11.5 kcal/mol), the structure of which was established by single-crystal X-ray diffraction studies. (E)-Chloro (8e) and (E)-bromobutadiene (8f) did not undergo Diels-Alder additions with SO2, even in the presence of protic or Lewis acid promoters. Low yields of 2-chloro- (11e) and 8-bromosulfolene (11f) were obtained at 20 degrees C. The structure of 11e was confirmed by single-crystal X-ray diffraction. The potential energy hypersurfaces of the Diels-Alder and cheletropic additions of SO2 to butadiene (8a), (E)-piperilene (8b), (E)-1-methoxy- (8c), (E)-1-acetoxy- (8d), and (E)-1-chlorobutadiene (8e) were studied by ab initio quantum calculations at the MP2/6-31G* level. In agreement with the experiment, 6-substituted sultines 9X and 10X were less stable than the corresponding 2-substituted sulfolenes 11X for X = Me, OAc, Cl. With X = OMe, the two diastereomeric 6-methoxysultines (9c, 10c) and 8-methoxysulfolene (11c) were calculated to have similar stabilities. This is attributed to a stabilizing thermodynamic anomeric effect or gem-sulfinate/methoxy disubstitution effect in 9c, 10c. Such effects were not detected for sulfinate/acetoxy (9d, 10d) and sulfinate/chloro (9e, 10e) disubstitutions. The relative instability of 8-acetoxy- (11d) and 2-chlorosulfolene (11e) compared with their cycloaddents is attributed to repulsive interactions between the SO2 moieties and the 2-substituents. The Alder endo mode of [4 + 2] cycloaddition of SO2 is predicted to be faster than the "anti-Alder mode" of additions for dienes 8X, X = Me, OMe, OAc, Cl. The resulting diastereomeric sultines 9X and 10X, respectively, exist as equilibria (energy barrier: ca. 5-6 kcal/mol) of two conformers 9X reversible arrow 9X, 10X reversible arrow 10X. In general, the conformers 9X, 10X with pseudoaxial S=O group are preferred (conformational anomeric effect of the sulfinate moiety). Repulsive interactions between pseudoaxial S=O and polar cis-6-substituents (e.g.: X = OMe, OAc) in 9X may render conformers 9X (with the S-O and 6-X groups in pseudoequatorial positions) as stable as conformers 9X. The calculations predict the existence of conformational anomeric effects of 2-3 kcal/mol for the gem-sulfinate/methoxy (9c, 10'c) and gem-sulfinate/acetoxy disubstitution (9d, 10'd).
    DOI:
    10.1021/jo981679g
  • 作为产物:
    描述:
    1-bromo-1,3-butadiene二氧化硫 作用下, 反应 12.0h, 以11%的产率得到2-bromo-2,5-dihydrothiophene-1,1-dioxide
    参考文献:
    名称:
    Competition between Hetero-Diels−Alder and Cheletropic Addition of Sulfur Dioxide. Theoretical and Experimental Substituent Effects on the Relative Stability of 3,6-Dihydro-1,2-oxathiin-2-oxides (Sultines) and 2,5-Dihydrothiophene-1,1-dioxides (Sulfolenes). Anomeric Effects in Sultine and 6-Substituted Derivatives
    摘要:
    At low temperature and in the presence of CF3COOH, SO2 undergoes Diels-Alder additions with (E)-1-acetoxybutadiene (8d) giving a 1:10 mixture of diastereomeric 6-acetoxysultines (9d + 10d). The Van't Hoff plot for equilibria 8d + SO2 reversible arrow 9d + 10d led to Delta H-r = -7.0 +/- 0.3 kcal/mol, Delta S-r = -42 +/- 3 cal . mol(-1) . K-1. At 20 degrees C, 8d underwent a slow cheletropic addition with SO2 giving 2-acetoxysulfolene (11d, Delta Hr congruent to -11.5 kcal/mol), the structure of which was established by single-crystal X-ray diffraction studies. (E)-Chloro (8e) and (E)-bromobutadiene (8f) did not undergo Diels-Alder additions with SO2, even in the presence of protic or Lewis acid promoters. Low yields of 2-chloro- (11e) and 8-bromosulfolene (11f) were obtained at 20 degrees C. The structure of 11e was confirmed by single-crystal X-ray diffraction. The potential energy hypersurfaces of the Diels-Alder and cheletropic additions of SO2 to butadiene (8a), (E)-piperilene (8b), (E)-1-methoxy- (8c), (E)-1-acetoxy- (8d), and (E)-1-chlorobutadiene (8e) were studied by ab initio quantum calculations at the MP2/6-31G* level. In agreement with the experiment, 6-substituted sultines 9X and 10X were less stable than the corresponding 2-substituted sulfolenes 11X for X = Me, OAc, Cl. With X = OMe, the two diastereomeric 6-methoxysultines (9c, 10c) and 8-methoxysulfolene (11c) were calculated to have similar stabilities. This is attributed to a stabilizing thermodynamic anomeric effect or gem-sulfinate/methoxy disubstitution effect in 9c, 10c. Such effects were not detected for sulfinate/acetoxy (9d, 10d) and sulfinate/chloro (9e, 10e) disubstitutions. The relative instability of 8-acetoxy- (11d) and 2-chlorosulfolene (11e) compared with their cycloaddents is attributed to repulsive interactions between the SO2 moieties and the 2-substituents. The Alder endo mode of [4 + 2] cycloaddition of SO2 is predicted to be faster than the "anti-Alder mode" of additions for dienes 8X, X = Me, OMe, OAc, Cl. The resulting diastereomeric sultines 9X and 10X, respectively, exist as equilibria (energy barrier: ca. 5-6 kcal/mol) of two conformers 9X reversible arrow 9X, 10X reversible arrow 10X. In general, the conformers 9X, 10X with pseudoaxial S=O group are preferred (conformational anomeric effect of the sulfinate moiety). Repulsive interactions between pseudoaxial S=O and polar cis-6-substituents (e.g.: X = OMe, OAc) in 9X may render conformers 9X (with the S-O and 6-X groups in pseudoequatorial positions) as stable as conformers 9X. The calculations predict the existence of conformational anomeric effects of 2-3 kcal/mol for the gem-sulfinate/methoxy (9c, 10'c) and gem-sulfinate/acetoxy disubstitution (9d, 10'd).
    DOI:
    10.1021/jo981679g
点击查看最新优质反应信息

同类化合物

()-2-(5-甲基-2-氧代苯并呋喃-3(2)-亚乙基)乙酸乙酯 (双(2,2,2-三氯乙基)) (乙基N-(1H-吲唑-3-基羰基)ethanehydrazonoate) (Z)-3-[[[2,4-二甲基-3-(乙氧羰基)吡咯-5-基]亚甲基]吲哚-2--2- (S)-(-)-5'-苄氧基苯基卡维地洛 (S)-(-)-2-(α-(叔丁基)甲胺)-1H-苯并咪唑 (S)-(-)-2-(α-甲基甲胺)-1H-苯并咪唑 (S)-氨氯地平-d4 (S)-8-氟苯并二氢吡喃-4-胺 (S)-4-(叔丁基)-2-(喹啉-2-基)-4,5-二氢噁唑 (S)-4-氯-1,2-环氧丁烷 (S)-3-(2-(二氟甲基)吡啶-4-基)-7-氟-3-(3-(嘧啶-5-基)苯基)-3H-异吲哚-1-胺 (S)-2-(环丁基氨基)-N-(3-(3,4-二氢异喹啉-2(1H)-基)-2-羟丙基)异烟酰胺 (SP-4-1)-二氯双(喹啉)-钯 (SP-4-1)-二氯双(1-苯基-1H-咪唑-κN3)-钯 (R,S)-可替宁N-氧化物-甲基-d3 (R,S)-六氢-3H-1,2,3-苯并噻唑-2,2-二氧化物-3-羧酸叔丁酯 (R)-(+)-5'-苄氧基卡维地洛 (R)-(+)-2,2'',6,6''-四甲氧基-4,4''-双(二苯基膦基)-3,3''-联吡啶(1,5-环辛二烯)铑(I)四氟硼酸盐 (R)-卡洛芬 (R)-N'-亚硝基尼古丁 (R)-DRF053二盐酸盐 (R)-4-异丙基-2-恶唑烷硫酮 (R)-3-甲基哌啶盐酸盐; (R)-2-苄基哌啶-1-羧酸叔丁酯 (N-(Boc)-2-吲哚基)二甲基硅烷醇钠 (N-{4-[(6-溴-2-氧代-1,3-苯并恶唑-3(2H)-基)磺酰基]苯基}乙酰胺) (E)-2-氰基-3-(5-(2-辛基-7-(4-(对甲苯基)-1,2,3,3a,4,8b-六氢环戊[b]吲哚-7-基)-2H-苯并[d][1,2,3]三唑-4-基)噻吩-2-基)丙烯酸 (E)-2-氰基-3-[5-(2,5-二氯苯基)呋喃-2-基]-N-喹啉-8-基丙-2-烯酰胺 (8α,9S)-(+)-9-氨基-七氢呋喃-6''-醇,值90% (6R,7R)-7-苯基乙酰胺基-3-[(Z)-2-(4-甲基噻唑-5-基)乙烯基]-3-头孢唑啉-4-羧酸二苯甲基酯 (6-羟基嘧啶-4-基)乙酸 (6,7-二甲氧基-4-(3,4,5-三甲氧基苯基)喹啉) (6,6-二甲基-3-(甲硫基)-1,6-二氢-1,2,4-三嗪-5(2H)-硫酮) (5aS,6R,9S,9aR)-5a,6,7,8,9,9a-六氢-6,11,11-三甲基-2-(2,3,4,5,6-五氟苯基)-6,9-甲基-4H-[1,2,4]三唑[3,4-c][1,4]苯并恶嗪四氟硼酸酯 (5R,Z)-3-(羟基((1R,2S,6S,8aS)-1,3,6-三甲基-2-((E)-prop-1-en-1-yl)-1,2,4a,5,6,7,8,8a-八氢萘-1-基)亚甲基)-5-(羟甲基)-1-甲基吡咯烷-2,4-二酮 (5E)-5-[(2,5-二甲基-1-吡啶-3-基-吡咯-3-基)亚甲基]-2-亚磺酰基-1,3-噻唑烷-4-酮 (5-(4-乙氧基-3-甲基苄基)-1,3-苯并二恶茂) (5-溴-3-吡啶基)[4-(1-吡咯烷基)-1-哌啶基]甲酮 (5-氯-2,1,3-苯并噻二唑-4-基)-氨基甲氨基硫代甲酸甲酯一氢碘 (5-氨基-6-氰基-7-甲基[1,2]噻唑并[4,5-b]吡啶-3-甲酰胺) (5-氨基-1,3,4-噻二唑-2-基)甲醇 (4aS-反式)-八氢-1H-吡咯并[3,4-b]吡啶 (4aS,9bR)-6-溴-2,3,4,4a,5,9b-六氢-1H-吡啶并[4,3-B]吲哚 (4S,4''S)-2,2''-环亚丙基双[4-叔丁基-4,5-二氢恶唑] (4-(4-氯苯基)硫代)-10-甲基-7H-benzimidazo(2,1-A)奔驰(德)isoquinolin-7一 (4-苄基-2-甲基-4-nitrodecahydropyrido〔1,2-a][1,4]二氮杂) (4-甲基环戊-1-烯-1-基)(吗啉-4-基)甲酮 (4-己基-2-甲基-4-nitrodecahydropyrido〔1,2-a][1,4]二氮杂) (4,5-二甲氧基-1,2,3,6-四氢哒嗪)