Synthesis and antiplasmodial activity of new heteroaryl derivatives of 7-chloro-4-aminoquinoline
摘要:
With the aim to investigate the effect of different heterocyclic rings linked to the 4-aminoquinoline nucleus on the antimalarial activity, a set of 7-chloro-N-(heteroaryl)-methyl-4-aminoquinoline and 7-chloro-N-(heteroaryl)-4-aminoquinoline was synthesized and tested in vitro against D-10 (CQ-S) and W-2 (CQ-R) strains of Plasmodium falciparum. All compounds exhibited from moderate to high antiplasmodial activities. The activity was strongly influenced both by the presence of a methylenic group, as a spacer between the 4-aminoquinoline and the heterocyclic ring, and by the presence of a basic head. The most potent molecules inhibited the growth of both CQ-S and CQ-R strains of P. falciparum with IC50 < 30 nM and were not toxic against human endothelial cells. These results confirm that the presence of an heteroaryl moiety in the side chain of 7-chloro-4-aminoquinoline is useful for the design and development of new powerful antimalarial agents. (C) 2012 Elsevier Ltd. All rights reserved.
Synthesis and antiplasmodial activity of new heteroaryl derivatives of 7-chloro-4-aminoquinoline
摘要:
With the aim to investigate the effect of different heterocyclic rings linked to the 4-aminoquinoline nucleus on the antimalarial activity, a set of 7-chloro-N-(heteroaryl)-methyl-4-aminoquinoline and 7-chloro-N-(heteroaryl)-4-aminoquinoline was synthesized and tested in vitro against D-10 (CQ-S) and W-2 (CQ-R) strains of Plasmodium falciparum. All compounds exhibited from moderate to high antiplasmodial activities. The activity was strongly influenced both by the presence of a methylenic group, as a spacer between the 4-aminoquinoline and the heterocyclic ring, and by the presence of a basic head. The most potent molecules inhibited the growth of both CQ-S and CQ-R strains of P. falciparum with IC50 < 30 nM and were not toxic against human endothelial cells. These results confirm that the presence of an heteroaryl moiety in the side chain of 7-chloro-4-aminoquinoline is useful for the design and development of new powerful antimalarial agents. (C) 2012 Elsevier Ltd. All rights reserved.
The present invention provides compounds of general formula (I), in which X, R1, R2 and R3 are as described and defined herein, methods of preparing said compounds, intermediate compounds useful for preparing said compounds, pharmaceutical compositions and combinations comprising said compounds, and the use of said compounds for manufacturing pharmaceutical compositions for the treatment and/or prophylaxis of diseases, in particular of hyperproliferative disorders such as cancer disorders, as a sole agent or in combination with other active ingredients.
new bis(azolylamino)- and bis(azolylmethylamino)quinazolines were prepared from 2,4-dichloroquinazoline and azolyl amines under ultrasonication and tested for their antimicrobialactivity. The chloro-, bromo-, and nitro-substituted bis(thiazolylamino)quinazolines displayed excellent antibacterial activity against Bacillus subtilis whereas unsubstituted, chloro-, bromo-, and nitro-substituted bis(im
With the aim to investigate the effect of different heterocyclic rings linked to the 4-aminoquinoline nucleus on the antimalarial activity, a set of 7-chloro-N-(heteroaryl)-methyl-4-aminoquinoline and 7-chloro-N-(heteroaryl)-4-aminoquinoline was synthesized and tested in vitro against D-10 (CQ-S) and W-2 (CQ-R) strains of Plasmodium falciparum. All compounds exhibited from moderate to high antiplasmodial activities. The activity was strongly influenced both by the presence of a methylenic group, as a spacer between the 4-aminoquinoline and the heterocyclic ring, and by the presence of a basic head. The most potent molecules inhibited the growth of both CQ-S and CQ-R strains of P. falciparum with IC50 < 30 nM and were not toxic against human endothelial cells. These results confirm that the presence of an heteroaryl moiety in the side chain of 7-chloro-4-aminoquinoline is useful for the design and development of new powerful antimalarial agents. (C) 2012 Elsevier Ltd. All rights reserved.