Acid monolayer functionalized iron oxide nanoparticles as catalysts for carbohydrate hydrolysis
作者:Myles Ikenberry、Leidy Peña、Daming Wei、Hongwang Wang、Stefan H. Bossmann、Trenton Wilke、Donghai Wang、Venugopal R. Komreddy、D. Paul Rillema、Keith L. Hohn
DOI:10.1039/c3gc41420e
日期:——
Superparamagnetic iron oxide nanoparticles were functionalized with a quasi-monolayer of 11-sulfoundecanoic acid and 10-phosphono-1-decanesulfonic acid ligands to create separable solid acid catalysts. The ligands are bound through carboxylate or phosphonate bonds to the magnetite core. The ligand-core bonding surface is separated by a hydrocarbon linker from an outer surface with exposed sulfonic acid groups. The more tightly packed monolayer of the phosphonate ligand corresponded to a higher sulfonic acid loading by weight, a reduced agglomeration of particles, a greater tendency to remain suspended in solution in the presence of an external magnetic field, and a higher catalytic activity per sulfonic acid group. The particles were characterized by thermogravimetric analysis (TGA), transmission electron microscopy (TEM), potentiometric titration, diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), inductively coupled plasma optical emission spectrometry (ICP-OES), and dynamic light scattering (DLS). In sucrose catalysis reactions, the phosphonic–sulfonic nanoparticles (PSNPs) were seen to be incompletely recovered by an external magnetic field, while the carboxylic–sulfonic nanoparticles (CSNPs) showed a trend of increasing activity over the first four recycle runs. The activity of the acid-functionalized nanoparticles was compared to the traditional solid acid catalyst Amberlyst-15 for the hydrolysis of starch in aqueous solution. Catalytic activity for starch hydrolysis was in the order PSNPs > CSNPs > Amberlyst-15. Monolayer acid functionalization of iron oxides presents a novel strategy for the development of recyclable solid acid catalysts.
超级磁性氧化铁纳米颗粒被功能化,表面覆盖了近单层的11-硫代十酸和10-磷酸十烷基磺酸配体,从而创建了可分离的固体酸催化剂。这些配体通过羧酸盐或磷酸盐键结合于磁铁矿核心。配体与核心的结合表面通过碳氢链与外表面分隔,外表面暴露有磺酸基团。更紧密排列的磷酸盐配体单层对应于更高的重量磺酸负载、较低的颗粒聚集、在外部磁场存在下更强的悬浮能力,以及每个磺酸基团更高的催化活性。通过热重分析(TGA)、透射电子显微镜(TEM)、电位滴定、漫反射红外傅里叶变换光谱(DRIFTS)、感应耦合等离子体光发射光谱(ICP-OES)和动态光散射(DLS)对颗粒进行了表征。在蔗糖催化反应中,磷酸–磺酸纳米颗粒(PSNPs)在外部磁场影响下回收不完全,而羧酸–磺酸纳米颗粒(CSNPs)在前四次循环中呈现出活性增加的趋势。酸功能化纳米颗粒的活性与传统固体酸催化剂Amberlyst-15在水溶液中水解淀粉的效果进行了比较。淀粉水解的催化活性顺序为PSNPs > CSNPs > Amberlyst-15。铁氧化物的单层酸功能化为开发可回收固体酸催化剂提供了一种新颖的策略。