摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

(S)-ureidoglycine | 136774-67-9

中文名称
——
中文别名
——
英文名称
(S)-ureidoglycine
英文别名
(S)-2-ureidoglycine;(2S)-2-amino-2-(carbamoylamino)acetic acid
(S)-ureidoglycine化学式
CAS
136774-67-9
化学式
C3H7N3O3
mdl
——
分子量
133.107
InChiKey
VTFWFHCECSOPSX-SFOWXEAESA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    -4.5
  • 重原子数:
    9
  • 可旋转键数:
    2
  • 环数:
    0.0
  • sp3杂化的碳原子比例:
    0.33
  • 拓扑面积:
    118
  • 氢给体数:
    4
  • 氢受体数:
    4

反应信息

  • 作为反应物:
    描述:
    (S)-ureidoglycine 在 (S)-ureidoglycine aminohydrolase from Arabidopsis thaliana 作用下, 生成 (2S)-(氨基甲酰氨基)(羟基)乙酸
    参考文献:
    名称:
    Structural and Functional Insights into (S)-Ureidoglycine Aminohydrolase, Key Enzyme of Purine Catabolism in Arabidopsis thaliana
    摘要:
    The ureide pathway has recently been identified as the metabolic route of purine catabolism in plants and some bacteria. In this pathway, uric acid, which is a major product of the early stage of purine catabolism, is degraded into glyoxylate and ammonia via stepwise reactions of seven different enzymes. Therefore, the pathway has a possible physiological role in mobilization of purine ring nitrogen for further assimilation. (S)-Ureidoglycine aminohydrolase enzyme converts (S)-ureidoglycine into (S)-ureidoglycolate and ammonia, providing the final substrate to the pathway. Here, we report a structural and functional analysis of this enzyme from Arabidopsis thaliana (AtUGlyAH). The crystal structure of AtUGlyAH in the ligand-free form shows a monomer structure in the bicupin fold of the beta-barrel and an octameric functional unit as well as a Mn2+ ion binding site. The structure of AtUGlyAH in complex with (S)-ureidoglycine revealed that the Mn2+ ion acts as a molecular anchor to bind (S)-ureidoglycine, and its binding mode dictates the enantioselectivity of the reaction. Further kinetic analysis characterized the functional roles of the active site residues, including the Mn2+ ion binding site and residues in the vicinity of (S)-ureidoglycine. These analyses provide molecular insights into the structure of the enzyme and its possible catalytic mechanism.
    DOI:
    10.1074/jbc.m111.331819
  • 作为产物:
    参考文献:
    名称:
    Structural Analysis of a Ternary Complex of Allantoate Amidohydrolase from Escherichia coli Reveals its Mechanics
    摘要:
    Purine metabolism plays a major role in regulating the availability of purine nucleotides destined for nucleic acid synthesis. Allantoate amidohydrolase catalyzes the conversion of allantoate to (S)-ureidoglycolate, one of the crucial alternate steps in purine metabolism. The crystal structure of a ternary complex of allantoate amidohydrolase with its substrate allantoate and an allosteric effector, a sulfate ion, from Escherichia coli was determined to understand better the catalytic mechanism and substrate specificity. The 2.25 A resolution X-ray structure reveals an alpha/beta scaffold akin to zinc exopeptidases of the peptidase M20 family and lacks the (beta/alpha)(8)-barrel fold characteristic of the amidohydrolases. Arrangement of the substrate and the two co-catalytic zinc ions at the active site governs catalytic specificity for hydrolysis of N-carbamyl versus the peptide bond in exopeptidases. In its crystalline form, allantoate amidohydrolase adopts a relatively open conformation. However, structural analysis reveals the possibility of a significant movement of domains via rotation about two hinge regions upon allosteric effector and substrate binding resulting in a closed catalytically competent conformation by bringing the substrate allantoate closer to co-catalytic zinc ions. Two cis-prolyl peptide bonds found on either side of the dimerization domain in close proximity to the substrate and ligand-binding sites may be involved in protein folding and in preserving the integrity of the catalytic site.
    DOI:
    10.1016/j.jmb.2007.02.028
点击查看最新优质反应信息

文献信息

  • Functional Analysis of 14 Genes That Constitute the Purine Catabolic Pathway in <i>Bacillus subtilis</i> and Evidence for a Novel Regulon Controlled by the PucR Transcription Activator
    作者:Anna C. Schultz、Per Nygaard、Hans H. Saxild
    DOI:10.1128/jb.183.11.3293-3302.2001
    日期:2001.6
    ABSTRACT

    The soil bacterium Bacillus subtilis has developed a highly controlled system for the utilization of a diverse array of low-molecular-weight compounds as a nitrogen source when the preferred nitrogen sources, e.g., glutamate plus ammonia, are exhausted. We have identified such a system for the utilization of purines as nitrogen source in B. subtilis . Based on growth studies of strains with knockout mutations in genes, complemented with enzyme analysis, we could ascribe functions to 14 genes encoding enzymes or proteins of the purine degradation pathway. A functional xanthine dehydrogenase requires expression of five genes ( pucA, pucB, pucC, pucD , and pucE ). Uricase activity is encoded by the pucL and pucM genes, and a uric acid transport system is encoded by pucJ and pucK . Allantoinase is encoded by the pucH gene, and allantoin permease is encoded by the pucI gene. Allantoate amidohydrolase is encoded by pucF . In a pucR mutant, the level of expression was low for all genes tested, indicating that PucR is a positive regulator of puc gene expression. All 14 genes except pucI are located in a gene cluster at 284 to 285° on the chromosome and are contained in six transcription units, which are expressed when cells are grown with glutamate as the nitrogen source (limiting conditions), but not when grown on glutamate plus ammonia (excess conditions). Our data suggest that the 14 genes and the gde gene, encoding guanine deaminase, constitute a regulon controlled by the pucR gene product. Allantoic acid, allantoin, and uric acid were all found to function as effector molecules for PucR-dependent regulation of puc gene expression. When cells were grown in the presence of glutamate plus allantoin, a 3- to 10-fold increase in expression was seen for most of the genes. However, expression of the pucABCDE unit was decreased 16-fold, while expression of pucR was decreased 4-fold in the presence of allantoin. We have identified genes of the purine degradation pathway in B. subtilis and showed that their expression is subject to both general nitrogen catabolite control and pathway-specific control.

    摘要 土壤细菌 枯草芽孢杆菌 已开发出一种高度可控的系统,可在首选氮源(如谷酸和氮)耗尽时利用多种低分子量化合物作为氮源。我们已经在枯草芽孢杆菌中发现了这种利用嘌呤作为氮源的系统。 枯草芽孢杆菌 .根据对基因敲除突变菌株的生长研究,并辅以酶分析,我们可以为 14 个编码嘌呤降解途径的酶或蛋白质的基因赋予功能。一个功能性黄嘌呤脱氢酶需要五个基因的表达(pucA、pucB、pucC、pucB、pucC、pucC、pucC)。 pucA、pucB、pucC、pucD 和 pucE ).尿酸酶活性由 pucL 和 pucM 基因编码尿酸酶活性,尿酸转运系统由 和 和 pucK .尿囊素酶由 pucH 基因编码,尿囊素渗透酶由 pucI 基因编码。尿囊素酰胺解酶由 pucF .在 突变体中 突变体中,所有测试基因的表达平都很低,这表明 PucR 是 puc 基因的表达。除 pucI 以外的 14 个基因都位于染色体 284 至 285°的基因簇中,并包含在六个转录单元中,当细胞以谷酸为氮源生长时(限制条件),这些基因会表达,但当细胞以谷酸加生长时(过量条件),这些基因不会表达。我们的数据表明,这 14 个基因和 gde 基因(编码鸟嘌呤酶)构成了一个由 pucR 基因产物控制的调控子。研究发现尿囊酸尿囊素尿酸都是 PucR 依赖性调控的效应分子。 puc 基因表达的效应分子。当细胞在谷酸和尿囊素的作用下生长时,大多数基因的表达量会增加 3 到 10 倍。然而 pucABCDE 单元的表达量减少了 16 倍,而 pucR 的表达则下降了 4 倍。我们已经确定了枯草芽孢杆菌嘌呤降解途径的基因嘌呤降解途径的基因 并发现它们的表达既受一般氮代谢物的控制,也受特定途径的控制。
  • An aminotransferase branch point connects purine catabolism to amino acid recycling
    作者:Ileana Ramazzina、Roberto Costa、Laura Cendron、Rodolfo Berni、Alessio Peracchi、Giuseppe Zanotti、Riccardo Percudani
    DOI:10.1038/nchembio.445
    日期:2010.11
    Purine catabolism is typically thought to yield metabolic waste material. However, bioinformatics analysis, coupled with structural and biochemical investigations, now demonstrates that the central carbons of the purine ring can be recycled into glycine in B. subtilis and other bacteria. Although amino acids are known precursors of purines, a pathway for the direct recycling of amino acids from purines has never been described at the molecular level. We provide NMR and crystallographic evidence that the PucG protein from Bacillus subtilis catalyzes the transamination between an unstable intermediate ((S)-ureidoglycine) and the end product of purine catabolism (glyoxylate) to yield oxalurate and glycine. This activity enables soil and gut bacteria to use the animal purine waste as a source of carbon and nitrogen. The reaction catalyzed by (S)-ureidoglycine–glyoxylate aminotransferase (UGXT) illustrates a transamination sequence in which the same substrate provides both the amino group donor and, via its spontaneous decay, the amino group acceptor. Structural comparison and mutational analysis suggest a molecular rationale for the functional divergence between UGXT and peroxisomal alanine-glyoxylate aminotransferase, a fundamental enzyme for glyoxylate detoxification in humans.
    嘌呤分解代谢通常被认为会产生代谢废物。然而,生物信息学分析以及结构和生物化学研究现在证明,在枯草杆菌和其他细菌中,嘌呤环的中心碳可被回收为甘酸。 虽然氨基酸是已知的嘌呤前体,但从嘌呤直接回收氨基酸的途径从未在分子平上被描述过。我们提供的核磁共振和晶体学证据表明,枯草芽孢杆菌的 PucG 蛋白催化了不稳定中间体((S)-基甘酸)与嘌呤分解代谢最终产物(乙醛酸)之间的转作用,从而产生草酸和甘酸。这种活性使土壤和肠道细菌能够利用动物嘌呤废物作为碳源和氮源。(S)-基甘乙醛酸基转移酶(UGXT)催化的反应说明了一种转酶序列,其中相同的底物既提供了基供体,又通过自发衰变提供了基受体。结构比较和突变分析表明了 UGXT 与过氧物酶体丙酸-乙醛酸基转移酶(人类乙醛酸解毒的基本酶)之间功能差异的分子原理。
  • Identifying reaction modules in metabolic pathways: bioinformatic deduction and experimental validation of a new putative route in purine catabolism
    作者:Matthieu Barba、Raphaël Dutoit、Christianne Legrain、Bernard Labedan
    DOI:10.1186/1752-0509-7-99
    日期:2013.12
    Abstract Background

    Enzymes belonging to mechanistically diverse superfamilies often display similar catalytic mechanisms. We previously observed such an association in the case of the cyclic amidohydrolase superfamily whose members play a role in related steps of purine and pyrimidine metabolic pathways. To establish a possible link between enzyme homology and chemical similarity, we investigated further the neighbouring steps in the respective pathways.

    Results

    We identified that successive reactions of the purine and pyrimidine pathways display similar chemistry. These mechanistically-related reactions are often catalyzed by homologous enzymes. Detection of series of similar catalysis made by succeeding enzyme families suggested some modularity in the architecture of the central metabolism. Accordingly, we introduce the concept of a reaction module to define at least two successive steps catalyzed by homologous enzymes in pathways alignable by similar chemical reactions. Applying such a concept allowed us to propose new function for misannotated paralogues. In particular, we discovered a putative ureidoglycine carbamoyltransferase (UGTCase) activity. Finally, we present experimental data supporting the conclusion that this UGTCase is likely to be involved in a new route in purine catabolism.

    Conclusions

    Using the reaction module concept should be of great value. It will help us to trace how the primordial promiscuous enzymes were assembled progressively in functional modules, as the present pathways diverged from ancestral pathways to give birth to the present-day mechanistically diversified superfamilies. In addition, the concept allows the determination of the actual function of misannotated proteins.

    摘要 背景

    机械多样的酶超家族中的酶通常显示出相似的催化机制。我们之前在环状酰胺解酶超家族中观察到了这样的关联,其成员在嘌呤嘧啶代谢途径的相关步骤中发挥作用。为了建立酶同源和化学相似性之间的可能联系,我们进一步研究了各自途径中的相邻步骤。

    结果

    我们确定了嘌呤嘧啶途径的连续反应显示出相似的化学反应。这些机制相关的反应通常由同源酶催化。检测到由连续酶家族进行的一系列相似催化反应,表明中心代谢的结构具有一定的模块化。因此,我们引入了反应模块的概念,以定义由类似化学反应可对齐的途径中由同源酶催化的至少两个连续步骤。应用这样的概念使我们能够为错注释的同源基因提出新的功能。特别是,我们发现了一种可能的尿素酸羧酰转移酶(UGTCase)活性。最后,我们提供实验数据支持结论,即这种UGTCase可能参与嘌呤降解中的新途径。

    结论

    使用反应模块概念应该具有很大的价值。它将帮助我们追踪原始的杂合酶如何逐步组装成功能模块,随着现有途径从祖先途径分化出来,产生了现代机械多样的超家族。此外,该概念允许确定错注释蛋白质的实际功能。

  • Chemical Basis of Nitrogen Recovery through the Ureide Pathway: Formation and Hydrolysis of <i>S</i>-Ureidoglycine in Plants and Bacteria
    作者:Fabio Serventi、Ileana Ramazzina、Ilaria Lamberto、Vincenzo Puggioni、Rita Gatti、Riccardo Percudani
    DOI:10.1021/cb900248n
    日期:2010.2.19
    White some organisms, including humans, eliminate oxidized purines to get rid of excess nitrogen, for many others the recovery of the purine ring nitrogen is vital. In the so-called ureide pathway, nitrogen is released as ammonia from allantoate through a series of reactions starting with allantoate amidohydrolase (AAH), a manganese-dependent enzyme found in plants and bacteria. We report NMR evidence that the true product of the AAH reaction is S-ureidoglycine, a nonstandard alpha-amino acid that spontaneously releases ammonia in vitro. Using gene proximity and logical genome analysis, we identified a candidate gene (ylbA) for S-ureidoglycine metabolism. The proteins encoded by Escherichia coli and Arabidopsis thaliana genes catalyze the manganese-dependent release of ammonia through hydrolysis of 5-ureidoglycine. Hydrolysis then inverts the configuration and yields 5-ureidoglycolate. S-Ureldoglycine aminohydrolase (UGHY) is cytosolic in bacteria, whereas in plants it is localized, like allantoate amidohydrolase, in the endoplasmic reticulum. These findings strengthen the basis for the known sensitivity of the ureide pathway to Mn availability and suggest a further rationale for the active transport of Mn in the endoplasmic reticulum of plant cells.
  • Reversible activation of allantoate amidohydrolase by acid-pretreatment and other properties of the enzyme
    作者:G.D. Vogels
    DOI:10.1016/s0926-6593(66)80067-x
    日期:1966.1
查看更多

同类化合物

(甲基3-(二甲基氨基)-2-苯基-2H-azirene-2-羧酸乙酯) (±)-盐酸氯吡格雷 (±)-丙酰肉碱氯化物 (d(CH2)51,Tyr(Me)2,Arg8)-血管加压素 (S)-(+)-α-氨基-4-羧基-2-甲基苯乙酸 (S)-阿拉考特盐酸盐 (S)-赖诺普利-d5钠 (S)-2-氨基-5-氧代己酸,氢溴酸盐 (S)-2-[[[(1R,2R)-2-[[[3,5-双(叔丁基)-2-羟基苯基]亚甲基]氨基]环己基]硫脲基]-N-苄基-N,3,3-三甲基丁酰胺 (S)-2-[3-[(1R,2R)-2-(二丙基氨基)环己基]硫脲基]-N-异丙基-3,3-二甲基丁酰胺 (S)-1-(4-氨基氧基乙酰胺基苄基)乙二胺四乙酸 (S)-1-[N-[3-苯基-1-[(苯基甲氧基)羰基]丙基]-L-丙氨酰基]-L-脯氨酸 (R)-乙基N-甲酰基-N-(1-苯乙基)甘氨酸 (R)-丙酰肉碱-d3氯化物 (R)-4-N-Cbz-哌嗪-2-甲酸甲酯 (R)-3-氨基-2-苄基丙酸盐酸盐 (R)-1-(3-溴-2-甲基-1-氧丙基)-L-脯氨酸 (N-[(苄氧基)羰基]丙氨酰-N〜5〜-(diaminomethylidene)鸟氨酸) (6-氯-2-吲哚基甲基)乙酰氨基丙二酸二乙酯 (4R)-N-亚硝基噻唑烷-4-羧酸 (3R)-1-噻-4-氮杂螺[4.4]壬烷-3-羧酸 (3-硝基-1H-1,2,4-三唑-1-基)乙酸乙酯 (2S,4R)-Boc-4-环己基-吡咯烷-2-羧酸 (2S,3S,5S)-2-氨基-3-羟基-1,6-二苯己烷-5-N-氨基甲酰基-L-缬氨酸 (2S,3S)-3-((S)-1-((1-(4-氟苯基)-1H-1,2,3-三唑-4-基)-甲基氨基)-1-氧-3-(噻唑-4-基)丙-2-基氨基甲酰基)-环氧乙烷-2-羧酸 (2S)-2,6-二氨基-N-[4-(5-氟-1,3-苯并噻唑-2-基)-2-甲基苯基]己酰胺二盐酸盐 (2S)-2-氨基-N,3,3-三甲基-N-(苯甲基)丁酰胺 (2S)-2-氨基-3-甲基-N-2-吡啶基丁酰胺 (2S)-2-氨基-3,3-二甲基-N-(苯基甲基)丁酰胺, (2S)-2-氨基-3,3-二甲基-N-2-吡啶基丁酰胺 (2S,4R)-1-((S)-2-氨基-3,3-二甲基丁酰基)-4-羟基-N-(4-(4-甲基噻唑-5-基)苄基)吡咯烷-2-甲酰胺盐酸盐 (2R,3'S)苯那普利叔丁基酯d5 (2R)-2-氨基-3,3-二甲基-N-(苯甲基)丁酰胺 (2-氯丙烯基)草酰氯 (1S,3S,5S)-2-Boc-2-氮杂双环[3.1.0]己烷-3-羧酸 (1R,5R,6R)-5-(1-乙基丙氧基)-7-氧杂双环[4.1.0]庚-3-烯-3-羧酸乙基酯 (1R,4R,5S,6R)-4-氨基-2-氧杂双环[3.1.0]己烷-4,6-二羧酸 齐特巴坦 齐德巴坦钠盐 齐墩果-12-烯-28-酸,2,3-二羟基-,苯基甲基酯,(2a,3a)- 齐墩果-12-烯-28-酸,2,3-二羟基-,羧基甲基酯,(2a,3b)-(9CI) 黄酮-8-乙酸二甲氨基乙基酯 黄荧菌素 黄体生成激素释放激素(1-6) 黄体生成激素释放激素 (1-5) 酰肼 黄体瑞林 麦醇溶蛋白 麦角硫因 麦芽聚糖六乙酸酯 麦根酸