摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

dimethyl hexafluorobicyclo[1.1.1]pentane-1,3-dicarboxylate | 199917-44-7

中文名称
——
中文别名
——
英文名称
dimethyl hexafluorobicyclo[1.1.1]pentane-1,3-dicarboxylate
英文别名
Dimethyl perfluorobicyclo[1,1,1]pentane-1,3-dicarboxylate;dimethyl 2,2,4,4,5,5-hexafluorobicyclo[1.1.1]pentane-1,3-dicarboxylate
dimethyl hexafluorobicyclo[1.1.1]pentane-1,3-dicarboxylate化学式
CAS
199917-44-7
化学式
C9H6F6O4
mdl
——
分子量
292.135
InChiKey
IGTTXGRJWPYCOQ-UHFFFAOYSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    1.1
  • 重原子数:
    19
  • 可旋转键数:
    4
  • 环数:
    3.0
  • sp3杂化的碳原子比例:
    0.78
  • 拓扑面积:
    52.6
  • 氢给体数:
    0
  • 氢受体数:
    10

上下游信息

  • 下游产品
    中文名称 英文名称 CAS号 化学式 分子量

反应信息

  • 作为反应物:
    描述:
    参考文献:
    名称:
    Preparation, Structure, and Properties of Symmetrically 1,3-Difunctionalized Penta- and Hexafluorobicyclo[1.1.1]pentanes
    摘要:
    Exhaustive direct fluorination of dimethyl bicyclo[1.1.1]pentane-1,3-dicarboxylate leads to dimethyl pentafluorobicyclo[1.1.1]pentane-1,3-dicarboxylate (2) and hexafluorobicyclo[1.1.1]pentane-1,3-dicarboxylate (3). The latter was hydrolyzed to the diacid (4) and converted to the 1,3-dibromo and 1,3-diiodo analogues (5 and 6) by the Hunsdieker reaction followed by treatment with SmI2. Na/NH3 reduction of the disodium salt 10 causes cage C-C bond cleavage. Single-crystal X-ray diffraction analysis of 3 revealed very short nonbonded F-F separations of 2.41 Angstrom and an interbridgehead distance of 1.979 Angstrom, long compared with 1.875 Angstrom in 1,3-diacetylbicyclo[1.1.1]pentane [19; cf. 1.954 Angstrom calculated (MP2/6-31G*) for 2,2,4,4,5,5-hexafluorobicyclo[1.1.1]pentane (13)]. Calculation suggests a strain energy of 101 kcal/mol (MP2/6-31G*) for the hexafluorinated cage, compared with 68 kcal/mol for the parent bicyclo[1.1.1]pentane (20). The remarkably low pK(a) values of 4 [0.73 and 1.34; cf. 3.22 and 4.26 for the parent diacid 24] originate in a direct field effect of fluorine atoms, combined with an increased s character of the exocyclic hybrid orbital on the bridgehead carbon in 4 (calculated 34% in 13) relative to 24 (calculated 30% in 20). Analysis of the strongly coupled nuclear spin systems of 2 and 3, based on a combination of two-dimensional NMR, spectral simulations, and GIAO-HF/6-31G* calculations of chemical shifts, revealed large and stereospecific long-range H-1-C-13, H-1-F-19, C-13-F-19, and F-19-F-19 spin-spin coupling constants.
    DOI:
    10.1021/ja9710518
  • 作为产物:
    描述:
    1,3-二甲酸甲酯双环[1.1.1]戊烷 在 fluorine 作用下, 以 1,1,2-三氯三氟乙烷(CFC-113) 为溶剂, 反应 4.0h, 以40%的产率得到dimethyl hexafluorobicyclo[1.1.1]pentane-1,3-dicarboxylate
    参考文献:
    名称:
    Preparation, Structure, and Properties of Symmetrically 1,3-Difunctionalized Penta- and Hexafluorobicyclo[1.1.1]pentanes
    摘要:
    Exhaustive direct fluorination of dimethyl bicyclo[1.1.1]pentane-1,3-dicarboxylate leads to dimethyl pentafluorobicyclo[1.1.1]pentane-1,3-dicarboxylate (2) and hexafluorobicyclo[1.1.1]pentane-1,3-dicarboxylate (3). The latter was hydrolyzed to the diacid (4) and converted to the 1,3-dibromo and 1,3-diiodo analogues (5 and 6) by the Hunsdieker reaction followed by treatment with SmI2. Na/NH3 reduction of the disodium salt 10 causes cage C-C bond cleavage. Single-crystal X-ray diffraction analysis of 3 revealed very short nonbonded F-F separations of 2.41 Angstrom and an interbridgehead distance of 1.979 Angstrom, long compared with 1.875 Angstrom in 1,3-diacetylbicyclo[1.1.1]pentane [19; cf. 1.954 Angstrom calculated (MP2/6-31G*) for 2,2,4,4,5,5-hexafluorobicyclo[1.1.1]pentane (13)]. Calculation suggests a strain energy of 101 kcal/mol (MP2/6-31G*) for the hexafluorinated cage, compared with 68 kcal/mol for the parent bicyclo[1.1.1]pentane (20). The remarkably low pK(a) values of 4 [0.73 and 1.34; cf. 3.22 and 4.26 for the parent diacid 24] originate in a direct field effect of fluorine atoms, combined with an increased s character of the exocyclic hybrid orbital on the bridgehead carbon in 4 (calculated 34% in 13) relative to 24 (calculated 30% in 20). Analysis of the strongly coupled nuclear spin systems of 2 and 3, based on a combination of two-dimensional NMR, spectral simulations, and GIAO-HF/6-31G* calculations of chemical shifts, revealed large and stereospecific long-range H-1-C-13, H-1-F-19, C-13-F-19, and F-19-F-19 spin-spin coupling constants.
    DOI:
    10.1021/ja9710518
点击查看最新优质反应信息

文献信息

  • Partially Bridge-Fluorinated Dimethyl Bicyclo[1.1.1]pentane-1,3-dicarboxylates:  Preparation and NMR Spectra
    作者:Alexander B. Shtarev、Evgueni Pinkhassik、Michael D. Levin、Ivan Stibor、Josef Michl
    DOI:10.1021/ja0000495
    日期:2001.4.1
    Direct fluorination of dimethyl bicyclo[1.1.1]pentane-1,3-dicarboxylate, obtained from [1.1.1]propellane prepared by an improved synthetic procedure, furnished esters of 14 of the 15 possible bridge-fluorinated bicyclo[1.1.1]pentane-1,3-dicarboxylic acids, isolated by preparative GC. Calculated geometries reflect the substitution pattern in a regular fashion compatible with Bent's rules. Considerable
    双环[1.1.1]戊烷-1,3-二甲酸二甲酯的直接氟化,从通过改进的合成程序制备的[1.1.1]丙烷获得,提供15种可能的桥氟化双环[1.1.1]中的14种酯戊烷-1,3-二羧酸,通过制备型 GC 分离。计算出的几何图形以与本特规则兼容的常规方式反映替代模式。通过多氟化作用将相当多的额外应变引入双环[1.1.1]戊烷笼中;经计算,六取代可高达 33-35 kcal/mol。氟取代基的三种排列尤其富含应变:成对、邻近和 W 相关。(1)H、(13)C 和 (19)F NMR 光谱表现出惊人的各种化学位移和长程耦合常数。这些与忽略 GIAO-RHF/6-31G//RHF/6-31G 和 GIAO-RHF/6-31G//MP2/6-的所有化学位移的桥头取代基计算的结果非常一致31G 方法和 EOM-CCSD/6-311G//MP2/6-311G 方法的许多耦合常数。近似 (4)J(FF) 常数特别大
  • Preparation, Structure, and Properties of Symmetrically 1,3-Difunctionalized Penta- and Hexafluorobicyclo[1.1.1]pentanes
    作者:Michael D. Levin、Steven J. Hamrock、Piotr Kaszynski、Alexander B. Shtarev、Galina A. Levina、Bruce C. Noll、Martin E. Ashley、Richard Newmark、George G. I. Moore、Josef Michl
    DOI:10.1021/ja9710518
    日期:1997.12.1
    Exhaustive direct fluorination of dimethyl bicyclo[1.1.1]pentane-1,3-dicarboxylate leads to dimethyl pentafluorobicyclo[1.1.1]pentane-1,3-dicarboxylate (2) and hexafluorobicyclo[1.1.1]pentane-1,3-dicarboxylate (3). The latter was hydrolyzed to the diacid (4) and converted to the 1,3-dibromo and 1,3-diiodo analogues (5 and 6) by the Hunsdieker reaction followed by treatment with SmI2. Na/NH3 reduction of the disodium salt 10 causes cage C-C bond cleavage. Single-crystal X-ray diffraction analysis of 3 revealed very short nonbonded F-F separations of 2.41 Angstrom and an interbridgehead distance of 1.979 Angstrom, long compared with 1.875 Angstrom in 1,3-diacetylbicyclo[1.1.1]pentane [19; cf. 1.954 Angstrom calculated (MP2/6-31G*) for 2,2,4,4,5,5-hexafluorobicyclo[1.1.1]pentane (13)]. Calculation suggests a strain energy of 101 kcal/mol (MP2/6-31G*) for the hexafluorinated cage, compared with 68 kcal/mol for the parent bicyclo[1.1.1]pentane (20). The remarkably low pK(a) values of 4 [0.73 and 1.34; cf. 3.22 and 4.26 for the parent diacid 24] originate in a direct field effect of fluorine atoms, combined with an increased s character of the exocyclic hybrid orbital on the bridgehead carbon in 4 (calculated 34% in 13) relative to 24 (calculated 30% in 20). Analysis of the strongly coupled nuclear spin systems of 2 and 3, based on a combination of two-dimensional NMR, spectral simulations, and GIAO-HF/6-31G* calculations of chemical shifts, revealed large and stereospecific long-range H-1-C-13, H-1-F-19, C-13-F-19, and F-19-F-19 spin-spin coupling constants.
查看更多

同类化合物

(甲基3-(二甲基氨基)-2-苯基-2H-azirene-2-羧酸乙酯) (±)-盐酸氯吡格雷 (±)-丙酰肉碱氯化物 (d(CH2)51,Tyr(Me)2,Arg8)-血管加压素 (S)-(+)-α-氨基-4-羧基-2-甲基苯乙酸 (S)-阿拉考特盐酸盐 (S)-赖诺普利-d5钠 (S)-2-氨基-5-氧代己酸,氢溴酸盐 (S)-2-[3-[(1R,2R)-2-(二丙基氨基)环己基]硫脲基]-N-异丙基-3,3-二甲基丁酰胺 (S)-1-(4-氨基氧基乙酰胺基苄基)乙二胺四乙酸 (S)-1-[N-[3-苯基-1-[(苯基甲氧基)羰基]丙基]-L-丙氨酰基]-L-脯氨酸 (R)-乙基N-甲酰基-N-(1-苯乙基)甘氨酸 (R)-丙酰肉碱-d3氯化物 (R)-4-N-Cbz-哌嗪-2-甲酸甲酯 (R)-3-氨基-2-苄基丙酸盐酸盐 (R)-1-(3-溴-2-甲基-1-氧丙基)-L-脯氨酸 (N-[(苄氧基)羰基]丙氨酰-N〜5〜-(diaminomethylidene)鸟氨酸) (6-氯-2-吲哚基甲基)乙酰氨基丙二酸二乙酯 (4R)-N-亚硝基噻唑烷-4-羧酸 (3R)-1-噻-4-氮杂螺[4.4]壬烷-3-羧酸 (3-硝基-1H-1,2,4-三唑-1-基)乙酸乙酯 (2S,3S,5S)-2-氨基-3-羟基-1,6-二苯己烷-5-N-氨基甲酰基-L-缬氨酸 (2S,3S)-3-((S)-1-((1-(4-氟苯基)-1H-1,2,3-三唑-4-基)-甲基氨基)-1-氧-3-(噻唑-4-基)丙-2-基氨基甲酰基)-环氧乙烷-2-羧酸 (2S)-2,6-二氨基-N-[4-(5-氟-1,3-苯并噻唑-2-基)-2-甲基苯基]己酰胺二盐酸盐 (2S)-2-氨基-3-甲基-N-2-吡啶基丁酰胺 (2S)-2-氨基-3,3-二甲基-N-(苯基甲基)丁酰胺, (2S,4R)-1-((S)-2-氨基-3,3-二甲基丁酰基)-4-羟基-N-(4-(4-甲基噻唑-5-基)苄基)吡咯烷-2-甲酰胺盐酸盐 (2R,3'S)苯那普利叔丁基酯d5 (2R)-2-氨基-3,3-二甲基-N-(苯甲基)丁酰胺 (2-氯丙烯基)草酰氯 (1S,3S,5S)-2-Boc-2-氮杂双环[3.1.0]己烷-3-羧酸 (1R,4R,5S,6R)-4-氨基-2-氧杂双环[3.1.0]己烷-4,6-二羧酸 齐特巴坦 齐德巴坦钠盐 齐墩果-12-烯-28-酸,2,3-二羟基-,苯基甲基酯,(2a,3a)- 齐墩果-12-烯-28-酸,2,3-二羟基-,羧基甲基酯,(2a,3b)-(9CI) 黄酮-8-乙酸二甲氨基乙基酯 黄荧菌素 黄体生成激素释放激素 (1-5) 酰肼 黄体瑞林 麦醇溶蛋白 麦角硫因 麦芽聚糖六乙酸酯 麦根酸 麦撒奎 鹅膏氨酸 鹅膏氨酸 鸦胆子酸A甲酯 鸦胆子酸A 鸟氨酸缩合物