In this work, six novelaxiallyunfixed biaryl‐based water‐compatible bifunctionalorganocatalysts were designed and synthesized for the organocatalytic access to a variety of 3‐alkyl‐3‐hydroxy‐2‐oxindole derivatives via aldol reactions in water. Organocatalyzed by 5a, the direct aldol reactions of isatins with enolisable ketones underwent readily in water, furnishing the structurally diverse 3‐al
Proline-Glycine Dipeptidic Derivatives of Chiral Phosphoramides as Organocatalysts for the Enantiodivergent Aldol Reaction of Aryl Aldehydes and Isatins with Cyclohexanone in the Presence of Water
(S)-proline-glycine dipeptides and incorporating a chiral phosphoramide fragment was accomplished. These chiral compounds catalyze the enantioselective aldol addition reaction of cyclohexanone to prochiral aryl aldehydes and isatins in the presence of water. These chiral organocatalysts represent some of the few proline-derived compounds capable to catalyze aldol-type addition of cyclohexanone to isatins, a C–C
The synthesis and application of a newly designed C2-symmetric chiral bifunctional triamine family (C2-CBT) is reported. These enantiopure chiral triamine scaffolds can be accessed in multigram amounts from simple amino acids while avoiding chromatographic purification. As a proof of principle, C2-CBT has been studied in the aldol reaction of cyclic ketones with isatins, with the target tertiary alcohols
Enantioselectivealdolreactions of various isatins with ketones using newly designed amino amide organocatalysts were found to provide chiral 3-substituted 3-hydroxy-2-oxindoles in good to excellent yields and with excellent stereoselectivities (up to 99 %, up to 98 % ee, syn/anti = 99:1); one catalyst, 3i, proved particularly successful. One of the resulting oxindoles, 3-hydroxy-3-(2-oxocyclohexyl)-2-indolinone
(R)- and (S)-Proline-Derived Chiral Phosphoramides as Organocatalysts for the Enantiodivergent Aldol Reaction of Isatins with Cyclohexanone in the Presence of Water
were rationally designed and subsequently synthesized. These chiral compounds catalyze the enantioselective aldol addition reaction of cyclohexanone to prochiral isatins in the presence of water. These observations are particularly relevant since reports of asymmetric aldol reactions between cyclohexanone and isatins catalyzed by chiral secondary amines remain scarce, with primary amines being the most