摩熵化学
数据库官网
小程序
打开微信扫一扫
首页 分子通 化学资讯 化学百科 反应查询 关于我们
请输入关键词

(1,2-Di-O-hexadecyl-sn-3-glyceryl)-O-(2,6-di-O-benzoyl-β-D-galactopyranosyl)-(1->4)-2,3,6-tri-O-benzoyl-β-D-glucopyranoside | 332075-25-9

中文名称
——
中文别名
——
英文名称
(1,2-Di-O-hexadecyl-sn-3-glyceryl)-O-(2,6-di-O-benzoyl-β-D-galactopyranosyl)-(1->4)-2,3,6-tri-O-benzoyl-β-D-glucopyranoside
英文别名
——
(1,2-Di-O-hexadecyl-sn-3-glyceryl)-O-(2,6-di-O-benzoyl-β-D-galactopyranosyl)-(1->4)-2,3,6-tri-O-benzoyl-β-D-glucopyranoside化学式
CAS
332075-25-9
化学式
C82H112O18
mdl
——
分子量
1385.78
InChiKey
LBJYZGDRJLVSHG-FOFWFSFQSA-N
BEILSTEIN
——
EINECS
——
  • 物化性质
  • 计算性质
  • ADMET
  • 安全信息
  • SDS
  • 制备方法与用途
  • 上下游信息
  • 反应信息
  • 文献信息
  • 表征谱图
  • 同类化合物
  • 相关功能分类
  • 相关结构分类

计算性质

  • 辛醇/水分配系数(LogP):
    16.31
  • 重原子数:
    100.0
  • 可旋转键数:
    50.0
  • 环数:
    7.0
  • sp3杂化的碳原子比例:
    0.57
  • 拓扑面积:
    227.34
  • 氢给体数:
    2.0
  • 氢受体数:
    18.0

反应信息

  • 作为反应物:
    描述:
    (1,2-Di-O-hexadecyl-sn-3-glyceryl)-O-(2,6-di-O-benzoyl-β-D-galactopyranosyl)-(1->4)-2,3,6-tri-O-benzoyl-β-D-glucopyranosidesodium methylate 作用下, 以 甲醇二氯甲烷 为溶剂, 以97%的产率得到(1,2-Di-O-hexadecenyl-sn-3-glyceryl)-O-(β-D-galactopyranosyl)(1->4-β-D-glucopyranoside
    参考文献:
    名称:
    Thermodynamic Properties and Swelling Behavior of Glycolipid Monolayers at Interfaces
    摘要:
    Synthetic glycolipids with lactose headgroups (N = 1, 2, and 3) were synthesized, and their thermodynamic properties were systematically studied by Langmuir isotherms using a film balance. The molar transition entropy and the molar latent heat were calculated by applying the Clausius-Clapeyron equation. It has been demonstrated that the phase behavior of the glycolipid monolayers is comparable to that of ordinary phospholipids, despite the lower degree of cooperativity between the larger headgroups. The glycolipid monolayer was transferred onto a solid surface by Langmuir-Blodgett deposition, and the swelling behavior was investigated by ellipsometry. The surface grafting density was precisely controlled, and the water disjoining pressure inside the lactose layer was quantitatively measured. The measured swelling curves were analyzed in terms of the theoretical descriptions for the grafted polymer "brushes". For the lipids with lactose units of N = 2 and 3, the disjoining pressure-thickness relation could fit very well to these theoretical approaches, even though the statistical limit N much greater than 1 is hardly fulfilled. The results suggest entropic effects of the headgroups on the interaction between the neighboring molecules. On the other hand, the theoretical description of the swelling behavior of the lipids with one lactose unit failed due to the "rodlike" structure of lactose. The unique properties of these glycolipids at interfaces, such as (i) the phase behavior comparable to that of ordinary phospholipids and (ii) the "polymer-like" swelling behavior, play very important roles in biological systems. Mimicking the complex interactions between oligosaccharide headgroups in the plasma membranes, the synthetic glycolipids designed in this study are quite realistic models for the glycocalix.
    DOI:
    10.1021/jp0028103
  • 作为产物:
    描述:
    (1,2-Di-O-hexadecyl-sn-3-glyceryl)-O-(2,6-di-O-benzoyl-3,4-di-O-isopropylidene-β-D-galactopyranosyl)-(1->4)-2,3,6-tri-O-benzoyl-β-D-glucopyranoside 在 三氟乙酸 作用下, 反应 6.0h, 以98%的产率得到(1,2-Di-O-hexadecyl-sn-3-glyceryl)-O-(2,6-di-O-benzoyl-β-D-galactopyranosyl)-(1->4)-2,3,6-tri-O-benzoyl-β-D-glucopyranoside
    参考文献:
    名称:
    Thermodynamic Properties and Swelling Behavior of Glycolipid Monolayers at Interfaces
    摘要:
    Synthetic glycolipids with lactose headgroups (N = 1, 2, and 3) were synthesized, and their thermodynamic properties were systematically studied by Langmuir isotherms using a film balance. The molar transition entropy and the molar latent heat were calculated by applying the Clausius-Clapeyron equation. It has been demonstrated that the phase behavior of the glycolipid monolayers is comparable to that of ordinary phospholipids, despite the lower degree of cooperativity between the larger headgroups. The glycolipid monolayer was transferred onto a solid surface by Langmuir-Blodgett deposition, and the swelling behavior was investigated by ellipsometry. The surface grafting density was precisely controlled, and the water disjoining pressure inside the lactose layer was quantitatively measured. The measured swelling curves were analyzed in terms of the theoretical descriptions for the grafted polymer "brushes". For the lipids with lactose units of N = 2 and 3, the disjoining pressure-thickness relation could fit very well to these theoretical approaches, even though the statistical limit N much greater than 1 is hardly fulfilled. The results suggest entropic effects of the headgroups on the interaction between the neighboring molecules. On the other hand, the theoretical description of the swelling behavior of the lipids with one lactose unit failed due to the "rodlike" structure of lactose. The unique properties of these glycolipids at interfaces, such as (i) the phase behavior comparable to that of ordinary phospholipids and (ii) the "polymer-like" swelling behavior, play very important roles in biological systems. Mimicking the complex interactions between oligosaccharide headgroups in the plasma membranes, the synthetic glycolipids designed in this study are quite realistic models for the glycocalix.
    DOI:
    10.1021/jp0028103
点击查看最新优质反应信息

文献信息

  • Synthesis and Molecular Tumbling Properties of Sialyl Lewis X and Derived Neoglycolipids
    作者:Christian Gege、Armin Geyer、Richard R. Schmidt
    DOI:10.1002/1521-3765(20020603)8:11<2454::aid-chem2454>3.0.co;2-u
    日期:2002.6.3
    applied to the synthesis of the corresponding Lewis X (LeX) derivatives. The glycolipids were inserted in model membranes, and the tumbling frequencies of the sLex tetrasaccharide epitopes were then analysed by NMR spectroscopy. A nonaethylene glycol spacer decouples the carbohydrate moiety from the membrane mobility while (oligo-)lactoses act as more rigid distance keepers between the Lewis epitope and
    唾液酸化的路易斯X(sLeX)表位已成为生物学研究的主要目标,因为它通过与选择素结合而在炎症中发挥作用。该表位位于糖鞘脂的末端,并且乳糖单元充当神经酰胺部分的间隔基。本文着重于间隔物结构和间隔物长度对sLeX表位迁移率的影响。为此目的,合成了具有一个,两个或三个乳糖单元作为sLeX四糖表位和膜锚之间间隔物的sLex新糖脂1a-c。该合成策略也被应用于相应的Lewis X(LeX)衍生物的合成。将糖脂插入模型膜中,然后通过NMR光谱分析sLex四糖表位的翻转频率。九甘醇间隔基使碳水化合物部分与膜的迁移性脱钩,而(低聚)乳糖酶则充当路易斯表位与膜表面之间更牢固的距离保持物。通过分析旋转相关时间可以量化不同程度的解耦。
  • Regioselective Acylation of Diols and Triols: The Cyanide Effect
    作者:Peng Peng、Michael Linseis、Rainer F. Winter、Richard R. Schmidt
    DOI:10.1021/jacs.6b02454
    日期:2016.5.11
    positioned hydroxy groups. As cyanide is capable of various kinds of hydrogen bonding and as it is a quite strong sterically nondemanding base, regioselective O-acylations should be possible at low temperatures even at sterically congested positions, thus permitting formation and also isolation of the kinetic product. Indeed, 1,2-cis-diols, having an equatorial and an axial hydroxy group, benzoyl cyanide
    碳水化合物化学的中心主题包括碳水化合物的结构修饰和寡糖合成。两者都需要受区域选择性保护的构建块,这些构建块主要通过间接多步程序获得。因此,需要针对特定​​羟基的直接保护方法。双氢键最终将区分不同位置的羟基。由于化物能够形成各种氢键,并且它是一种非常强的空间要求不高的碱,因此即使在空间拥挤的位置,也应该可以在低温下进行区域选择性 O-酰化,从而允许形成和分离动力学产物。实际上,具有赤道和轴羟基的 1,2-顺式二醇、苯甲酰或乙酰作为酰化剂,和 DMAP 作为催化剂在 -78°C 下产率热力学上不利的轴向 O-酰化产物;在这些条件下未观察到酰基迁移。这种现象被 3,4-O-未保护的半乳糖喃岩藻糖苷以及 2,3-O-未保护的甘露糖苷证实。即使对于作为三醇的 3,4,6-O-未保护的喃半乳糖苷,轴向 4-O-酰化也明显快于伯 6-羟基的 O-酰化。氢键对这种不寻常的区域选择性的重要性可以通过
查看更多

同类化合物

(甲基3-(二甲基氨基)-2-苯基-2H-azirene-2-羧酸乙酯) (±)-盐酸氯吡格雷 (±)-丙酰肉碱氯化物 (d(CH2)51,Tyr(Me)2,Arg8)-血管加压素 (S)-(+)-α-氨基-4-羧基-2-甲基苯乙酸 (S)-阿拉考特盐酸盐 (S)-赖诺普利-d5钠 (S)-2-氨基-5-氧代己酸,氢溴酸盐 (S)-2-[[[(1R,2R)-2-[[[3,5-双(叔丁基)-2-羟基苯基]亚甲基]氨基]环己基]硫脲基]-N-苄基-N,3,3-三甲基丁酰胺 (S)-2-[3-[(1R,2R)-2-(二丙基氨基)环己基]硫脲基]-N-异丙基-3,3-二甲基丁酰胺 (S)-1-(4-氨基氧基乙酰胺基苄基)乙二胺四乙酸 (S)-1-[N-[3-苯基-1-[(苯基甲氧基)羰基]丙基]-L-丙氨酰基]-L-脯氨酸 (R)-乙基N-甲酰基-N-(1-苯乙基)甘氨酸 (R)-丙酰肉碱-d3氯化物 (R)-4-N-Cbz-哌嗪-2-甲酸甲酯 (R)-3-氨基-2-苄基丙酸盐酸盐 (R)-1-(3-溴-2-甲基-1-氧丙基)-L-脯氨酸 (N-[(苄氧基)羰基]丙氨酰-N〜5〜-(diaminomethylidene)鸟氨酸) (6-氯-2-吲哚基甲基)乙酰氨基丙二酸二乙酯 (4R)-N-亚硝基噻唑烷-4-羧酸 (3R)-1-噻-4-氮杂螺[4.4]壬烷-3-羧酸 (3-硝基-1H-1,2,4-三唑-1-基)乙酸乙酯 (2S,4R)-Boc-4-环己基-吡咯烷-2-羧酸 (2S,3S,5S)-2-氨基-3-羟基-1,6-二苯己烷-5-N-氨基甲酰基-L-缬氨酸 (2S,3S)-3-((S)-1-((1-(4-氟苯基)-1H-1,2,3-三唑-4-基)-甲基氨基)-1-氧-3-(噻唑-4-基)丙-2-基氨基甲酰基)-环氧乙烷-2-羧酸 (2S)-2,6-二氨基-N-[4-(5-氟-1,3-苯并噻唑-2-基)-2-甲基苯基]己酰胺二盐酸盐 (2S)-2-氨基-N,3,3-三甲基-N-(苯甲基)丁酰胺 (2S)-2-氨基-3-甲基-N-2-吡啶基丁酰胺 (2S)-2-氨基-3,3-二甲基-N-(苯基甲基)丁酰胺, (2S)-2-氨基-3,3-二甲基-N-2-吡啶基丁酰胺 (2S,4R)-1-((S)-2-氨基-3,3-二甲基丁酰基)-4-羟基-N-(4-(4-甲基噻唑-5-基)苄基)吡咯烷-2-甲酰胺盐酸盐 (2R,3'S)苯那普利叔丁基酯d5 (2R)-2-氨基-3,3-二甲基-N-(苯甲基)丁酰胺 (2-氯丙烯基)草酰氯 (1S,3S,5S)-2-Boc-2-氮杂双环[3.1.0]己烷-3-羧酸 (1R,5R,6R)-5-(1-乙基丙氧基)-7-氧杂双环[4.1.0]庚-3-烯-3-羧酸乙基酯 (1R,4R,5S,6R)-4-氨基-2-氧杂双环[3.1.0]己烷-4,6-二羧酸 齐特巴坦 齐德巴坦钠盐 齐墩果-12-烯-28-酸,2,3-二羟基-,苯基甲基酯,(2a,3a)- 齐墩果-12-烯-28-酸,2,3-二羟基-,羧基甲基酯,(2a,3b)-(9CI) 黄酮-8-乙酸二甲氨基乙基酯 黄荧菌素 黄体生成激素释放激素(1-6) 黄体生成激素释放激素 (1-5) 酰肼 黄体瑞林 麦醇溶蛋白 麦角硫因 麦芽聚糖六乙酸酯 麦根酸